

Extended Aerosol Inorganics Model (E-AIM)

Specifications of subroutines EAIMstr and EAIMvar

(these Fortran routines can be used to call the E-AIM model

within other programs, using a dynamic link library)

Version 1.0 (7 January 2015): describes use for inorganic systems only.

This manual is part of a zip file package that also contains the libraries and example programs.

Author: Simon L. Clegg

University of East Anglia

Email: s.clegg@uea.ac.uk

Phone: +44 (0)1603 593185

Skype: slclegg

1

Table of Contents

1. Introduction 2

2. Libraries containing the E-AIM subroutines 2

3. What the E-AIM subroutines do 3

4. Specification of the E-AIM subroutine EAIMstr 4

 4.1 Arguments 4

4.2 Internal EAIMstr parameters 10

4.3 An example call of EAIMstr 11

5. Specification of the E-AIM subroutine EAIMvar 13

 5.1 Arguments 14

 5.2 Internal EAIMvar parameters 25

5.3 An example call of EAIMvar 26

6. Module versions of the E-AIM subroutines 27

 6.1 Specification of subroutine EAIMstr (module version) 27

 6.1.1 Arguments 28

 6.1.2 Internal EAIMstr parameters 30

 6.1.3 Calling EAIMstr 31

 6.2 Specification of subroutine EAIMvar (module version) 31

 6.2.1 Arguments 32

 6.2.2 Internal EAIMvar parameters 37

 6.2.3 Calling EAIMvar 38

7. Files 38

Appendix 1. Specifying Input Data for EAIMstr , Using
 the String Argument Input 40

Appendix 2. Simple Test Programs (non-module routi nes) 45

Appendix 3. Simple Test Programs (module routines) 46

Appendix 4. Notes on Running E-AIM Subroutines in Different
 Programming Environments 47

2

1. Introduction
This document describes the specification of two Fo rtran subroutine versions of the Extended

Aerosol Inorganics Model (E-AIM , http://www.aim.env.uea.ac.uk/aim/aim.php). Either one of the

subroutines can be called within other programs to carry out calculations for E-AIM Models I-IV,

similar to those on the Simple , Comprehensive , and Aqueous Solution pages on the website. The

subroutines are provided as a dynamic link library.

The subroutines described in sections 4 and 5 of th is document have interfaces – i.e., sets of

arguments – that are intended to be suitable for us e in both Fortran and non-Fortran programming

environments. (The arguments are simple strings, in teger and real scalar variables, and Fortran

‘explicit shape’ arrays only.) Two alternative vers ions of the subroutines are described in

section 6. These have fewer arguments, but can only be linked to another Fortran program which

has been compiled using the Intel compiler. The inf ormation that has to be provided for every

calculation is essentially the same as described on the website for Batch mode input (e.g., see

http://www.aim.env.uea.ac.uk/aim/model2/model2d.php).

The first of the two subroutines that can be called from the dynamic link library is EAIMstr .

For this routine most of the input data are entered in a text string argument. The data that

must be provided in the string are the same as for the web-based Batch mode input referred to

above. The second, alternative, subroutine is calle d EAIMvar . For this routine the same input

data are required, but are entered in real and inte ger variables and arrays (not using a text

string). Both routines will give the same results. The only differences are, first, that for

EAIMvar the user can switch off calculations of solution a nd solid densities, and surface

tensions, if they are not needed (in EAIMstr they are always calculated, if possible). This may

yield a small increase in speed. Second, EAIMvar may be preferable for use in iterative

calculations because the direct input of real numbe rs – rather than via a text string – makes it

easier to avoid a loss of precision.

So far, the routines have been called successfully from other Fortran programs, and have been

run within Mathematica, using its NETLink facility.

2. Libraries containing the E-AIM subroutines
The E-AIM subroutines are provided in the form of dynamic li nk libraries (dlls), which have the

extension .dll. There are four different versions o f the library, all of which contain the

routines described in sections 4 and 5 of this docu ment. The libraries have the following names:

• EAIM_d32.dll – the model code runs in double precis ion, and has been compiled for

execution on Windows machines with a 32 bit version of the Windows operating system.

• EAIM_d64.dll – the model code runs in double precis ion, and has been compiled for

execution on Windows machines with a 64 bit version of the Windows operating system.

• EAIM_q32.dll – the model code runs in extended (qua d) precision, and has been compiled for

execution on Windows machines with a 32 bit version of the Windows operating system.

• EAIM_q64.dll – the model code runs in extended (qua d) precision, and has been compiled for

execution on Windows machines with a 64 bit version of the Windows operating system.

The libraries have been compiled using the Intel Fo rtran compiler, version 13.1.3 or later. They

are supplied with the corresponding .lib and .exp f iles, which are needed if the dll is going to

be used by another Fortran program. The libraries a ll contain both EAIMstr and EAIMvar . They are

3

supplied with two example programs (Test_str.for an d Test_var.for), which are described in

Appendix 2.

An alternative copy of the library, which has versi ons of EAIMstr and EAIMvar contained within a

Fortran module, is described in section 6. (The nam e of this library is EAIM_module_q64.dll.)

What is the difference between the double precision and quad precision versions of the model and

subroutines? The calculation of the amounts of diss olved OH - (aq) in a solution that is acidic, or

partitioning of H 2SO4(g) into the gas phase (H 2SO4 has very low volatility), requires a precision

of greater than 15 digits (“double precision”) in o rder to obtain an accurate result. This is

inherent in the method used to solve for the equili brium state of the chemical system. The

“extended precision” versions of the model, in whic h real numbers have about 32 digits of

precision, are thus the most general in terms of th e kinds of calculations they can do. These

are the ones that run on the E-AIM website. However, the extended precision code runs at least a

factor of 5 slower than the double precision code w hich is just as good for many types of

problem in which the amounts of the different varia bles (the moles of each species) do not

differ by tens of orders of magnitude.

3. What the E-AIM subroutines do
When the E-AIM routines are first invoked (called) they will carr y out a series of checks to

determine whether the arguments have the correct si zes, and whether some integer arguments have

been set correctly. If these tests are failed, the routines will return (with blank or zero

outputs) and with an error message in the string ar gument Messages , and error codes in the

string errorFlags . Note that these tests are carried out only on the first calls of the routine,

and not on later calls.

If the E-AIM routines pass the basic checks noted above, they w ill then open a file called

eaim.err , which should appear in the same directory as the executable that calls the dll. If the

model code detects an error - in the input data for example - a message will be written at the

end of the eaim.err file (i.e., appended) with a time stamp, and execu tion of the routines will

stop. There will be no other alert or warning, so i f the routine does not appear to work, then

the error file should be checked for messages. The error file can be deleted by the user if

required, because the E-AIM routines will create a new eaim.err file if one does not already

exist.

The code will also look for a file called eaim.org (in the same directory as the executable

program calling the dll). If the file is found, the number of organic compounds to be included

in the calculation is read from it, followed by the thermodynamic properties of each of these

compounds. Note that the amounts of these organic c ompounds, for each problem, must be specified

in the input arguments to the subroutine together w ith the amounts of the inorganic species, as

described in sections 4 and 5 below. If the eaim.org file does not exist (or if the number of

organic species entered in it is zero), the problem will be treated as "inorganic only". This

document does not yet contain a description of how to include organic compounds in an E-AIM

calculation (contact Simon Clegg if you are interes ted).

Next, the subroutines read the input data for the p roblem from real, integer, and string

arguments that are described below. If these data f ail internal tests, or are incomplete, then

an explanatory error message and a time stamp will be written at the end of the file eaim.err .

Execution of the code will then stop, without any o ther messages or warnings. If the internal

tests are passed, the E-AIM calculation will be carried out and the results re turned to the

calling (sub)program in the INTENT(OUT) arguments o f the routines.

4

4. Specification of the E-AIM subroutine EAIMstr
This section describes the input and output argumen ts of EAIMstr. The colour codes used below

are as follows: red – an argument that contains input data for the cal culation which must be

provided by the user; blue – an argument of INTENT(OUT) that contains the res ults of the

calculation; black – an integer argument of INTENT(IN) which specifie s the length of a string

argument, or the size of an array argument. Note th at in the specification below REAL (KIND=8)

quantities are “double precision” (with approx. 15 digits of precision), and INTEGER (KIND=4)

are 4 byte integers (which have a range of +2147483 648).

SUBROUTINE EAIMstr(ModelNumber , iOptions , iSizeiOptions , Input , lenInput ,

 iOutput , iSizeiOutput , Output , iOutputLabel ,

 iSizeOutput , lenOutputLabel , Messages , lenMessages ,

 UsageRecord , lenUsageRecord , ErrorFlags , lenErrorFlags)

INTEGER (KIND=4), INTENT(IN) :: iSizeiOptions, iSizeiOutput, iSizeOutput,

 lenInput, lenOutput Label, lenMessages,

 lenUsageRecord, len ErrorFlags, ModelNumber ,

 iOptions (iSizeiOptions)

CHARACTER (LEN=lenInput), INTENT(IN) :: Input

REAL (KIND=8), INTENT(OUT) :: Output (iSizeOutput)

INTEGER (KIND=4), INTENT(OUT) :: iOutput (iSizeiOutput),

INTEGER (KIND=4) :: iOutputLabel (lenOutputLabel, iSizeOutput)

CHARACTER (LEN=lenMessages), INTENT(OUT) :: Messages

CHARACTER (LEN=lenUsageRecord), INTENT(OUT) :: UsageRecord

CHARACTER (LEN=lenErrorFlags), INTENT(OUT) :: errorFlags

4.1 Arguments

1: ModelNumber - INTEGER.

On entry : the reference number of the E-AIM model to be used in the calculation.

Constraint : 1 < ModelNumber < 4.

Details : This scalar variable selects the E-AIM model to be used and must have one of the

following values: 1 - Model I; 2 - Model II; 3 - Mo del III; 4 - Model IV.

Notes : The value will be read when the routine is first called only, or when input argument

iOption(4) = 1.

2: iOptions(iSizeIoptions) - INTEGER array, of size iSizeOptions.

On entry: sets options for the calculation of solution densit ies and surface tensions, whether

thermodynamic consistency tests will be carried out on the results, and whether initialization

5

of the model will be carried out on the current cal l of the routine. (This initialization is

carried out automatically on the first call, irresp ective of the option setting.)

Constraint: all values of the array must be either 0 (option o ff), or 1 (option on).

Details: this is an integer array that is used to specify o ptions to control or include/exclude

different elements of the calculation. Possible val ues are as follows:

iOptions(1) = 0, or 1. For EAIMstr this option has no effect. Please use EAIMvar if it

 is required. (A value of 1 m eans that densities and volumes of

 the liquid phase(s) and soli d(s) will be calculated, if possible.

 A value of 0 means that they will not be calculated. Any other

 value will be trapped as an error.)

iOptions(2) = 0, or 1. For EAIMstr this option has no effect. Please use EAIMvar if it

 is required. (A value of 1 m eans that the surface tension(s) of

 the liquid phase(s) and soli d(s) will be calculated if possible.

 A value of 0 means that they will not be calculated. Any other

 value will be trapped as an error.)

iOptions(3) = 0, or 1. A value of 0 means that a se ries of tests for the thermodynamic

 consistency of the result of the model calculation will *not* be

 carried out. This may result in slightly faster execution. A value

 of 1 means that the tests wi ll be carried out, and any failures

 indicated in the argument errorFlags (see below).

iOptions(4) = 0, or 1. When the subroutine is first called, a series of initialisations

 are always carried out (thes e are necessary for the code to function

 correctly). A value of 0 mea ns that on later calls these initialisations

 will not be carried out (thi s is how the model is expected to be run).

 A value of 1 means that the initializations will be done. This option

 may be useful for test purpo ses.

iOptions(5) = 0, or 1. A value of 1 means that a us age record will be written to the

 string argument UsageRecord (see below for details). A value of

 zero means no record will be written, and UsageRecord will be blank.

3: iSizeiOptions – INTEGER.

On entry: the dimension of array iOptions as declared in the (sub)program from which the E-AIM

subroutine is called.

Constraint: must be > minSizeiOptions, which is an internal pa rameter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 4.2.

4: Input - CHARACTER, a string of length lenInput.

On entry: contains the input data for the problem to be solv ed.

Details: this character string contains the input data for the problem to be solved. The data

for each problem are specified in the same way as f or Batch input for the web-based model. This

6

is described in Appendix 1 of this document, and on the following web page:

http://www.aim.env.uea.ac.uk/aim/model2/input2d.htm l . For chemical systems containing only

inorganic compounds, only items a – u from the descriptions should be entered into Input . (If

your system contains organic compounds then additio nal files will be needed to run the model.

Please contact Simon Clegg.)

5: lenInput – INTEGER.

On entry: the length of character string Input as declared i n the (sub)program from which the E-

AIM subroutine is called.

Constraint: must be > minLenInput, which is an internal parame ter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 4.2.

6: iOutput(iSizeiOutput) – INTEGER, an array of size iSizeiOutput.

On exit: the elements of this array contain information abo ut the results of the chemical

calculation.

Details: each element of the array contains the data listed below.

iOutput(1) : an integer from 1 to 3, meaning the fo llowing:

 0 - the result contains neither an aqu eous nor a hydrophobic liquid phase.

 1 - the result contains an aqueous pha se (but not a hydrophobic liquid phase).

 2 - the result contains a hydrophobic liquid phase (but not an aqueous phase).

 3 - the result contains both an aqueou s phase and a hydrophobic liquid phase.

iOutput(2) : NC, the maximum number of cations in t he system.

iOutput(3) : NA, the maximum number of anions in th e system.

iOutput(4) : NN, the maximum number of neutral spec ies in the system (including water).

iOutput(5) : NG, the maximum number of gases in the system.

iOutput(6) : NS, the maximum number of solids in th e system.

7: iSizeiOutput – INTEGER.

On entry: the size of integer array iOutput as declared in the (sub)program from which the E-AIM

subroutine is called.

Constraint: must be > minSizeiOutput, which is an internal par ameter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 4.2.

8: Output(iSizeOutput) – REAL, an array of size iSizeOutput.

On exit: contains the results of the calculation.

7

Details: this array will contain the results of the E-AIM calculation. The quantities contained

in each of the elements of array Output are given below. See also the output array

iOutputLabels , in which integer-coded labels corresponding to th e output quantities are placed.

Note the following definitions used below: NSOL = NC + NA + NN

 NSOL2 = 2 * NSOL

 NSOL3 = 3 * NSOL

 NSOL4 = 4 * NSOL

Output(1) - RH, the relative humidity (as a fraction)

Output(2) - T, temperature (K)

Output(3) - P, system pressure (atm.)

Output(4) - V, system volume (m 3)

Output(5) - density of the aqueous phas e (g cm -3)

Output(6) - volume of the aqueous phase (cm 3)

Output(7) - surface tension of the aque ous phase (mN m -1)

Output(8) - density of the hydrophobic phase (g cm -3)

Output(9) - volume of the hydrophobic p hase (cm 3)

Output(10) - surface tension of the hydr ophobic phase (mN m -1)

Output(11: 10+NC) - moles of e ach cation (aqueous phase)

Output(11+NC: 10+NC+NA) - moles of e ach anion (aqueous phase)

Output(11+NC+NA: 10+NSOL) - moles of e ach neutral (aqueous phase)

Output(11+NSOL: 10+NSOL+NC) - act. coeff . of each cation (aqueous phase)

Output(11+NSOL+NC: 10+NSOL+NC+NA) - act. coeff . of each anion (aqueous phase)

Output(11+NSOL+NC+NA: 10+NSOL2) - act. coeff . of each neutral (aqueous phase)

Output(11+NSOL2: 10+NSOL2+NC) - moles of e ach cation (hydrophobic phase)

Output(11+NSOL2+NC: 10+NSOL2+NC+NA) - moles of e ach anion (hydrophobic phase)

Output(11+NSOL2+NC+NA: 10+NSOL3) - moles of e ach neutral (hydrophobic phase)

Output(11+NSOL3: 10+NSOL3+NC) - act. coeff . of each cation (hydrophobic phase)

Output(11+NSOL3+NC: 10+NSOL3+NC+NA) - act. coeff . of each anion (hydrophobic phase)

Output(11+NSOL3+NC+NA: 10+NSOL4) - act. coeff . of each neutral hydrophobic phase)

Output(11+NSOL4: 10+NSOL4+NG) - moles of e ach gas

Output(11+NSOL4+NG: 10+NSOL4+2*NG) - equilibriu m partial pressure of each gas (atm)

Output(11+NSOL4+2*NG: 10+NSOL4+2*NG+NS) - mo les of each solid

Output(11+NSOL4+2*NG+NS: 10+NSOL4+2*(NG+NS)) - vo lume of each solid (cm 3)

Output(11+NSOL4+2*(NG+NS): 10+NSOL4+2*NG+3*NS) - sa turation ratio of each solid

Notes: zero or a negative number will be assigned to quan tities that are not relevant, such as

properties of the hydrophobic phase where one does not exist, or quantities that could not be

calculated (for example densities or surface tensio ns of chemical systems for which there are

insufficient data).

8

9: iSizeOutput – INTEGER.

On entry: the size of real array Output as declared in the (sub)program from which the E-AIM

subroutine is called.

Constraint: must be > minSizeOutput, which is an internal para meter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 4.2.

Notes : a test of the size of the array Output is carried out in the E-AIM routine. This will

stop, with an error message, if a larger size than the current value of iSizeOutput is needed.

10: iOutputLabel(lenOutputlabel, iSizeOutput) – INTEGER, a two dimensional array with a first

dimension of size lenOuputLabel, and a second dimen sion of size iSizeOutput

On exit: each column iOutputLabel(:, i) contains an integer-coded label that describes the

contents of the same element Output(i) of the results of the calculation. Values are assi gned in

EAIMstr to this argument when the routine is first called. On later calls it will only be re-

assigned for iOptions(4) = 1.

Constraints: it is expected that all values are >0 and <127.

Details: these labels for the results contained in the Output array are encoded by their

positions in the ASCII character table. This is don e using the intrinsic Fortran function

IACHAR, which is described in the Intel Fortran doc umentation as follows: “ returns the position

of a character in the ASCII character set, even if the processor's default character set is

different. In Intel Fortran, IACHAR is equivalent t o the ICHAR function.” For example, the

first output quantity is the relative humidity (RH) , thus iOutputLabel(1,1) = 82, and

iOutputLabel(2,1) = 72. The integer 82 is the position of upper case R in the ASCII table, and

72 is the position of upper case H. Thus this label is ‘RH’ when converted back to character

form. The unused positions in the array are filled with blanks (position 32 in the ASCII table),

thus iOutputLabel(3:, i) in this example are all set equal to 32.

Notes: this array of integer-coded labels is written only on the first call of the routine, or

if iOptions(4) = 1. This integer coding is used because in some p rogramming environments an

array of strings (i.e., a two dimensional character array) is awkward to handle.

11: lenOutputLabel – INTEGER.

On entry: the first dimension of two dimensional integer arr ay iOutputLabel , as declared in the

(sub)program from which the E-AIM subroutine is called.

Constraint: must be > minLenOutputLabel, which is an internal parameter of the E-AIM subroutine.

A list of the current values of these internal para meters is given in section 4.2.

12: Messages - CHARACTER, a string of length lenMessages.

On exit: contains error or warning messages relating to fau lts encountered in the main E-AIM

routine, otherwise it will be blank.

Details: some testing of array sizes and input values is ca rried out in the E-AIM subroutine. If

the tests are failed, the subroutine will return an explanatory message in this string (and no

other results). The string should be checked after the E-AIM routine has been called.

9

Notes: where there is a failure, or an input error, that is detected within the E-AIM code for

the chemical model an error message will be written to the file eaim.err. This is likely to be

in the same directory as executable that calls the E-AIM subroutine (see section 3). Execution

of the E-AIM code will then stop.

13: lenMessages – INTEGER.

On entry: the length of character string Messages as declared in the (sub)program from which the

E-AIM subroutine is called.

Constraint: must be > minLenMessages, which is an internal par ameter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 4.2.

14: UsageRecord - CHARACTER, a string of length lenUsageRecord.

On exit: a statement that includes the current date and tim e, and the time taken (in seconds) to

execute the call of the E-AIM subroutine.

Details: the record is only written if the value iOptions(5) = 1 when the routine is called.

Otherwise, UsageRecord will be blank. Here is a typical example record:

" E-AIMTr: dll()() 1 - 26-05-14 16 :23:40 - Elapsed: 1.8720 - Organics: 2 -"

The first entry, E-AIMTr, refers to the model being used (Models I & II - E-AIMTr; Model III -

E-AIM25; Model IV - E-AIMFr). The contents of the t wo sets of parentheses are intentionally

blank, and the number “1” refers to the number of c alculations carried out since the first call

of the routine (thus, it is a counter). The date an d time follow, and then the elapsed time

(seconds) for the current call of the routine. The final value in the record is the number of

organic compounds that have been included in the mo del system (2, in this particular example).

15: lenUsageRecord – INTEGER.

On entry : the length of character string UsageRecord as declared in the (sub)program from which

the E-AIM subroutine is called.

Constraint : must be > minLenUsageRecord, which is an internal parameter of the E-AIM subroutine.

A list of the current values of these internal para meters is given in section 4.2.

16: errorFlags - CHARACTER, a string of length lenErrorFlags.

On exit: contains a set of single character flags indicatin g the success or failure of the E-AIM

call, and the results of thermodynamic consistency tests.

Details: the first character in the string is always assign ed a value, and the second character

will be assigned a value if the chemical model has been called and returned a result. The

remaining characters of the string are reserved for error flags which indicate failures of tests

of the model result (which will be carried out if t he value of iOption(3) is set to unity.

errorFlags(1:1) = '0' for a successful call of the E-AIM routine, and '1' for a failure in

 which there is an error in one or more of the arguments (an array or string

10

 set to the wrong size, for exampl e). In this case the content of the string

 Messages should be written out, because this is likely to e xplain the error.

errorFlags(2:2) = the integer iFail, which is a fla g set by the solver used to calculate

 equilibrium. A value of '0' indic ates complete success. Experience shows that

 '6' and '1' also occur for correc t answers. If iFail takes other values then

 the result is doubtful - please c ontact the author.

errorFlags(3:10) = if these characters are all blan k then the result of the E-AIM calculation

 has passed a set of internal tes ts for thermodynamic consistency, and is

 likely to be correct. Failures o f the internal tests are indicated by one or

 more of the following single cha racter flags (which may appear in any order):

 L - one or more variables in the c alculation are within a small factor

 of their lower bounds (at the final result). Experience suggests

 that this means that there are errors in the calculated equilibria and

 therefore concentrations and/o r partial pressures for some minor species.

 W – water activity or relative hum idity.

 G - equilibrium between the gases and the liquid and/or solid phases;

 S – saturation of the aqueous and/ or hydrophobic phases with respect

 to one or more of the solids p resent.

 H – the concentration of hydrogen ion in the liquid phase(s) is

 low enough that gas/liquid par titioning of NH 3 may not be

 accurately estimated (this app lies in E-AIM calculations that do

 not include the dissociation o f NH 4
+(aq) and water).

 P – Gibbs' phase rule.

 R – other reactions in and between the liquid phase(s).

 A – calculated activities of organ ic compounds in the system are

 greater than unity, relative t o the pure liquid reference state.

17: lenErrorFlags – INTEGER.

On entry : the length of character string errorFlags as declared in the (sub)program from which

the E-AIM subroutine is called.

Constraint : must be > minLenErrorFlags, which is an internal parameter of the E-AIM subroutine.

A list of the current values of these internal para meters is given below.

4.2 Internal EAIMstr parameters

The sizes of input and output arrays of the E-AIM subroutine are tested within the routine to

make sure they are greater than or equal to certain lengths (for strings) and sizes (for

arrays). The following parameters are defined in th e source code of the E-AIM subroutine. They

set minimum permitted lengths and sizes of the argu ments of the routine. The values as currently

set should be OK for most problems. They are used f or testing the validity of the arguments.

11

minLenInput : the length of the character str ing argument Input must be greater than or

 equal to this value.

minSizeOutput : the number of elements of the d ouble precision array argument Output , and

 the second dimension of the int eger array iOutputLabel , must be greater

 than or equal to this value.

minLenOutputLabel : the length of each element (i.e ., the size of the first dimension) of the

 integer array argument iOutputLabel must be greater than or equal to this

 value.

minLenMessages : the length of the character str ing argument Messages must be greater than or

 equal to this value.

minSizeiOutput : the size of integer array argum ent iOutput must be greater than or equal to

 this value.

minLenUsageRecord : the length of the character str ing argument UsageRecord must be greater than

 or equal to this value.

minSizeiOptions : the size of the integer array a rgument iOptions must be greater than or

 equal to this value.

minLenErrorFlags : the length of the character str ing argument ErrorFlags must be greater than

 or equal to this value.

The values of the above parameters that specify the se minimum lengths (minLen…) and sizes

(minSize…), are as follows:

 minLenInput = 250, minSizeiOutput = 6,

 minSizeOutput = 200, minLenUsageRecord = 150,

 minLenOutputLabel = 50, minSizeiOptions = 5,

 minLenMessages = 350, minLenErrorFlags = 10

4.3 An example call of EAIMstr

Here we describe a call of EAIMstr for a system con taining 0.1 moles H 2SO4, 1.0 moles (NH 4) 2SO4,

and 0.5 moles of NH 4NO3 in a system of 1.0 m 3 volume at a total pressure of 1.0 atm. (These

amounts of the salts are equivalent to 0.2 moles H +, 2.5 moles NH 4
+, 1.1 moles SO 4

2- , and 0.5

moles NO 3
-). The ambient temperature is 15 oC (288.15 K), and the equilibrium relative humidity

is fixed at 70% (0.7). The dissociation of water is switched on. The gases NH 3 and HNO 3 are

allowed to partition into the gas phase, but not H 2SO4. All solids can form. Model II is used for

this calculation. When EAIMstr is called, the value s of the input arguments should be as

follows:

ModelNumber = 2

iOptions(1) = 0 or 1 (this option has no effect for EAIMstr, s ee EAIMvar description)

12

iOptions(2) = 0 or 1 (as above)

iOptions(3) = 1

iOptions(4) = 0 or 1 (the value has no effect on the first call)

iOptions(5) = 1

Input = “288.15 1.0 1.0 1 1 0.70 0.2 2.5 0. 1.1 0. 5 0. 0. 0. 0. 0 0 0 3 0 0”

This completes the description of the problem. The remaining input arguments specify the length

and size of the strings and arrays that describe th e problem and the results. They are as

follows: iSizeiOptions = 5, lenInput = 250, iSizeiOutput = 6, iSizeOutput = 200, lenOutputLabel

= 50, lenMessages = 350, lenUsageRecord = 150, lenErrorFlags = 10. The assigned values are the

minimum lengths and sizes allowed, and are listed a t the end of the previous section.

This problem is the first one in the text file Test _str.dat, which is the input data file for

the program Test_str.for that is included with this manual. The program is intended to

demonstrate, in the simplest way possible, how to c all the EAIMstr subroutine from the supplied

dynamic link library.

After EAIMstr has been called successfully with the above input data, the values of the output

variables are as given below. Note that the integer -coded labels (iOutputLabel) for each of the

quantities in Output have been converted back to characters, and that q uantities in Output which

are zero are not listed. (When the test program Tes t_str is run, the output below will be found

in the file Test_str.res.)

 iOutput(1) = 1 iOutput(4) = 2

 iOutput(2) = 3 iOutput(5) = 6

 iOutput(3) = 6 iOutput(6) = 30

 i Output(i) iOutputLabel(1:,i) (a)
 1 0.7000E+00 RH

 2 0.2881E+03 T

 3 0.1000E+01 P

 4 0.1000E+01 V

 5 0.1311E+01 aqueous phase density (g cm-3)

 6 0.1328E+03 aqueous phase volume (cm3)

 7 0.8755E+02 aqueous phase surface tension (mN m-1)

 11 0.1866E-01 nH(aq)

 12 0.1244E+01 nNH4(aq)

 14 0.1813E+00 nHSO4(aq)

 15 0.2905E+00 nSO4(aq)

 16 0.5000E+00 nNO3(aq)

 19 0.1038E-15 nOH(aq)

 20 0.4175E+01 nH2O(aq)

 21 0.4291E-09 nNH3(aq)

 22 0.1352E+01 fH(aq)

 23 0.4225E+00 fNH4(aq)

 25 0.4685E+00 fHSO4(aq)

 26 0.1894E-01 fSO4(aq)

 27 0.2276E+00 fNO3(aq)

 30 0.1609E+02 fOH(aq)

 31 0.1075E+01 fH2O(aq)

 32 0.1535E+01 fNH3(aq)

 55 0.5039E+00 nH2O(g)

13

 56 0.1286E-05 nHNO3(g)

 58 0.2492E-08 nNH3(g)

 61 0.1177E-01 pH2O(g) (atm.)

 62 0.3005E-07 pHNO3(g) (atm.)

 64 0.5823E-10 pNH3(g) (atm.)

 65 0.1285E-20 pH2SO4(g) (atm.)

 76 0.6282E+00 n(NH4)2SO4

106 0.4690E+02 vol. (NH4)2SO4 (cm^3)

129 0.2658E-08 ratio H2SO4.H2O

130 0.8601E-08 ratio H2SO4.2H2O

131 0.3122E-06 ratio H2SO4.3H2O

132 0.2717E-05 ratio H2SO4.4H2O

133 0.2666E-13 ratio H2SO4.6.5H2O

134 0.7221E-05 ratio HNO3.H2O

135 0.1132E-03 ratio HNO3.3H2O

136 0.1000E+01 ratio (NH4)2SO4

137 0.3061E+00 ratio (NH4)3H(SO4)2

138 0.2054E-01 ratio NH4HSO4

139 0.5294E+00 ratio NH4NO3

140 0.5366E+00 ratio 2NH4NO3.(NH4)2SO4

141 0.3501E+00 ratio 3NH4NO3.(NH4)2SO4

142 0.3247E-01 ratio NH4NO3.NH4HSO4

155 0.1176E-04 ratio HNO3.2H2O

UsageRecord: (b)

" E-AIMTr: dll()() 1 - 16-06-14 11 :46:36 - Elapsed: 0.2930 - Organics: 0 -"

errorFlags:

"00 "

Messages:

""

Notes

(a) As stated above, the labels have been converted back from integer codes to

characters. As an example, for output number 2 (tem perature, T) the corresponding value

of iOutputLabel(1:,2) (i.e., the second column of the integer array) is 84 followed by

(lenOutputLabel – 1) instances of 32. The integer 84 is the position i n the ASCII table

of upper case letter T, and 32 is the position of t he “blank” character in the table.

(b) If you repeat this example the date, time, and elapsed time reported in UsageRecord

will of course differ from those here.

5. Specification of the E-AIM subroutine EAIMvar
This section describes the input and output argumen ts of EAIMvar. The colour codes used below

are as follows: red – an argument that contains input data for the cal culation which must be

provided by the user; blue – an argument of INTENT(OUT) that contains the res ults of the

14

calculation; black – an integer argument of INTENT(IN) which specifie s the length of a string

argument, or the size of an array argument. Note th at in the specification below REAL (KIND=8)

quantities are “double precision” (with approx. 15 digits of precision), and INTEGER (KIND=4)

are 4 byte integers (which have a range of +2147483 648).

SUBROUTINE EAIMvar(ModelNumber , iOptions , iSizeiOptions ,

 T, P, V,

 iWaterCase , iDissocOption , WaterValue ,

 InorganicMoles , iSizeInorgMoles ,

 iGasOptions , iSizeiGasOptions , nSolidOptions ,

 iSolidOptions , iSizeiSolidOptions ,

 nOrganicCmpnds , OrganicMoles , iSizeOrgMoles ,

 iOrganicOptions , iSizeiOrgOptions ,

 iOutput , iSizeiOutput , Output , iOutputLabel ,

 iSizeOutput , lenOutputLabel ,

 Messages , lenMessages , UsageRecord , lenUsageRecord ,

 errorFlags , lenErrorFlags)

 INTEGER (KIND=4), INTENT(IN) :: iSizeiOptions , iSizeInorgMoles ,

 iSizeOrgMoles , iSizeiGasOptions ,

 iSizeiSolidOptions , iSizeiOrgOptions , iSizeOutput ,

 iSizeiOutput , lenOutputLabel , lenMessages ,

 lenUsageRecord , lenErrorFlags

 INTEGER (KIND=4), INTENT(IN) :: ModelNumber , iOptions (iSizeiOptions),

 nOrganicCmpnds

 REAL (KIND=8), INTENT(IN) :: T, P, V, WaterValue ,

 InorganicMoles (iSizeInorgMoles)

 REAL (KIND=8) :: OrganicMoles (iSizeOrgMoles)

 INTEGER (KIND=4), INTENT(IN) :: iWaterCase , iDissocOption ,

 iGasOptions (iSizeiGasOptions), nSolidOptions

 INTEGER (KIND=4) :: iSolidOptions (2, iSizeiSolidOptions),

 iOrganicOptions (iSizeiOrgOptions)

 REAL (KIND=8), INTENT(OUT) :: Output (iSizeOutput)

 INTEGER (KIND=4), INTENT(OUT) :: iOutput (iSizeiOutput)

 INTEGER (KIND=4) :: iOutputLabel (lenOutputLabel , iSizeOutput)

 CHARACTER (LEN=lenMessages), INTENT(OUT) :: Messages

 CHARACTER (LEN=lenUsageRecord), INTENT(OUT) :: UsageRecord

 CHARACTER (LEN=lenErrorFlags), INTENT(OUT) :: errorFlags

5.1 Arguments

1: ModelNumber - INTEGER.

On entry : the reference number of the E-AIM model to be used in the calculation.

15

Constraint : 1 < ModelNumber < 4.

Details : This scalar variable selects the E-AIM model to be used and must have one of the

following values: 1 - Model I; 2 - Model II; 3 - Mo del III; 4 - Model IV.

Notes : The value will be read when the routine is first called only, or when input argument

iOption(4) = 1. (This argument is identical for both EAIMstr and EAIMvar.)

2: iOptions(iSizeiOptions) - INTEGER, an array of size iSizeiOptions.

On entry: sets options for the calculation of solution densit ies and surface tensions, whether

thermodynamic consistency tests will be carried out on the results, and whether initialization

of the model will be carried out on the current cal l of the routine. (This initialization is

carried out automatically on the first call, irresp ective of the option setting.)

Constraint: all values of the array must be either 0 (option o ff), or 1 (option on).

Details: this is an integer array that is used to specify o ptions to control or include/exclude

different elements of the calculation. (This argume nt is identical for both EAIMstr and

EAIMvar.) Possible values are as follows:

iOptions(1) = 0, or 1. A value of 1 means that dens ities and volumes of the liquid phase(s) and

 solid(s) will be calculated, if possible. A value of 0 means that they

 will not be calculated. Any other value will be trapped as an error.

iOptions(2) = 0, or 1. A value of 0 means that the surface tension(s) of the liquid phase(s) and

 solid(s) will be calculated if possible. A value of 0 means that they

 will not be calculated. Any other value will be trapped as an error.

iOptions(3) = 0, or 1. A value of 0 means that a se ries of tests for the thermodynamic

 consistency of the result of the model calculation will *not* be carried

 out. This may result in slig htly faster execution. A value of 1 means

 that the tests will be carri ed out, and any failures indicated in the

 argument errorFlags (see below).

iOptions(4) = 0, or 1. When the subroutine is first called, a series of initialisations are

 always carried out (these ar e necessary for the code to function

 correctly). A value of 0 mea ns that on later calls these initialisations

 will not be carried out (thi s is how the model is expected to be run). A

 value of 1 means that the in itializations will be done. This option may

 be useful for test purposes, or perhaps when calling in a programming

 environment in which data in ternal to routine EAIMvar are not saved for

 some reason.

iOptions(5) = 0, or 1. A value of 1 means that a us age record will be written to the string

 argument UsageRecord (see below for details). A value of zero means no

 record will be written, and UsageRecord will be blank.

3: T - REAL.

On entry: the temperature (K) at which the calculation will be carried out.

16

Constraints: the valid range is 180 to 330 K (for Models I, II and IV), or 298.15 K only (Model

III).

4: P - REAL.

On entry: the system pressure (atm.).

Constraints: must be >0. It is recommended that this value is s et at 1.0.

5: V - REAL.

On entry : the system volume (m 3).

Constraints : must be >0. The code has not been tested for very large or small values of V, which

is set at 1.0 in the web-based version of E-AIM .

6: iWaterCase - INTEGER.

On entry : the way in which water is to be treated in the mo del (held in the condensed phase,

specified as a fixed RH, or equilibrated between va pour and condensed phases).

Constraints : must be 1, 2, or 3.

Details : this argument and the associated WaterValue (below) should be considered together.

iWaterCase = 1 means that the relative humidity of the system (specified as a fraction) is to be

fixed to WaterValue . Alternative iWaterCase values are 2, for which WaterValue must be the total

number of moles of water in the system. Here the pr ogram will solve for the equilibrium

distribution of water between the vapour and conden sed phases and will give the calculated

relative humidity as an output. For iWaterCase = 3, WaterValue is again the total number of

moles of water in the system, but in this case it i s not allowed to partition into the vapour,

and remains in the condensed phase as a liquid, ice , or water of hydration.

7: iDissocOption - INTEGER.

On entry : determines whether or not the dissociation of wat er in the liquid phase is included in

the calculations.

Constraints : must be -1, 0, or 1.

Details : A value of -1 means that dissociation is not calc ulated for any input conditions. A

value of zero means that if the numbers of moles of H + and OH - are both entered as zero (see

item 9 below), then H 2O dissociation in the aqueous phase will remain off , and neither ion will

be a variable in the calculations. If a non-zero va lue of either H + or OH - is entered, then the

other quantity will be made a variable and water di ssociation will be on. A value of 1 means

that water dissociation will always be calculated, and both H +(aq) and OH - (aq) will be made

variables in the calculation, even if their input a mounts are zero.

8: WaterValue - REAL.

On entry : the number of moles of water present in the chemi cal system, or the ambient relative

humidity (expressed as a fraction, not a percentage), according to the value of iWaterCase .

17

Constraints : for iWaterCase = 2 or 3, WaterValue must be > 0. For iWaterCase = 1 (fixed RH), 0.1

< WaterValue < 0.999.

Details : where iWaterCase is equal to 1, WaterValue is the equilibrium relative humidity in the

chemical system, expressed as a fraction (thus, 80% RH is entered as 0.80). For iWaterCase equal

to 2 or 3, WaterValue is the number of moles of water in the chemical sy stem, either constrained

to the condensed phase only (iWaterCase = 3), or allowed to partition between the condense d and

vapour phases (iWaterCase = 2).

9: InorganicMoles(iSizeInorgMoles) - REAL, an array of size iSizeInorgMoles.

On entry : the numbers of moles of H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , Br - , OH - and NH 3 present in the

system.

Constraints : all values must be > 0.0, and the amounts of cati ons and anions must be charge

balanced.

Details : the numbers of moles of each species must be pres ent in elements 1:9 of the array in

the order: H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , Br - , OH - and NH 3. The valid combinations of non-zero

species for each model are: Model I - H +, SO 4
2- , NO 3

- , Cl - , and Br - ; Model II - H +, NH 4
+, SO 4

2- , NO 3
- ,

OH- and NH 3; Models III and IV - H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , OH - , and NH 3.

10: iSizeInorgMoles – INTEGER.

On entry: the dimension of array InorganicMoles as declared in the (sub)program from which the

E-AIM subroutine is called.

Constraint: must be > minSizeInorganicMoles, which is an inter nal parameter of the E-AIM

subroutine. A list of the current values of these i nternal parameters is given in section 5.2.

11: iGasOptions(iSizeiGasOptions) – INTEGER, an array of size iSizeiGasOptions.

On entry : flags that control the treatment of the inorganic gases HNO 3, HCl, NH 3, H 2SO4, and HBr

in the chemical system (if they can be formed).

Constraints : each value can be equal to 0, 3, or 4.

Details : the integer flags must be present in elements 1:5 of the array, and apply to the gases

HNO3, HCl, NH 3, H 2SO4, and HBr, respectively. The flags control how the gas phase species are

treated. Taking HNO 3(g) as an example, a value of '3' means that it is assumed not to occur and

so all NO 3
- (and associated H +) remain in the condensed phase(s). A value of '4' means, again,

assume no formation of HNO 3(g) but report its equilibrium partial pressure ove r the liquid phase

(if it exists, and also contains both H+ and NO 3
-). A value of '0' means that HNO 3(g) can be

formed and will be partitioned between the phases i f the two ions are present. The same applies

to the other gases.

Notes : for systems containing NH 3 that are likely to contain a near-neutral or alkal ine aqueous

phase it is advisable to turn on the dissociation o f water.

12: iSizeiGasOptions – INTEGER.

18

On entry: the size of array iGasOptions as declared in the (sub)program from which the E-AIM

subroutine is called.

Constraint: must be > minSizeiGasOptions, which is an internal parameter of the E-AIM

subroutine. A table of the current values of these internal parameters is given in section 5.2.

13: nSolidOptions - INTEGER.

On entry : the number of inorganic solids for which options will be specified in the array

iSolidOptions (see below).

Constraints : must be >0 and <30.

Details : it is possible to switch off the formation of ind ividual solids (as many as needed) in

the model in order to investigate the properties of supersaturated solutions. See the next entry

for further details.

14: iSolidOptions(2,iSizeiSolidOptions) – INTEGER, an array with a first dimension of size 2,

and a second dimension of size iSizeiSolidOptions

On entry : if nSolidOptions is >0, the element iSolidOptions(1, i) should contain the reference

number of the solid whose option value is being set , and iSolidOptions(2, i) should contain the

value of the option itself, for the i th solid for which an option is being set. If no so lid

options are being set then the array can be left bl ank.

Details : the reference numbers of the inorganic solids in the model are given in the list below:

Ref: Solid Ref: Solid Ref: Solid

 1 H2O(ice) 10 (NH4)2SO4 18 Na2SO4

 2 H2SO4 11 (NH4)3H(SO4)2 19 Na2SO4.10H2O

 3 H2SO4.H2O 12 NH4HSO4 20 Na3H(SO4)2

 4 H2SO4.2H2O 13 NH4NO3 21 NaHSO4.H2O

 5 H2SO4.3H2O 14 2NH4NO3.(NH4)2SO4 22 NaHSO4

 6 H2SO4.4H2O 15 3NH4NO3.(NH4)2SO4 23 NaH3(SO4)2.H2O

 7 H2SO4.6.5H2O 16 NH4NO3.NH4HSO4 24 Na2SO4.(NH4)2SO4.4H2O

 8 HNO3.H2O 17 NH4Cl 25 NaNO3

 9 HNO3.3H2O 26 NaNO3.Na2SO4.H2O

 27 NaCl

 28 HCl.3H2O

 29 HNO3.2H2O

 30 NaCl.2H2O

The permitted option values (i.e., possible values of iSolidOptions(2, i)) for each solid i are

3, which means exclude the solid from the calculati on, or 4 which has the same meaning except

that the degree of saturation of any liquid phase w ith respect to the solid will be calculated.

The easiest way to explain the use of these options is by example. Suppose we wish to switch off

the formation of just one solid, (NH 4) 2SO4, in a calculation. In this case nSolidOptions = 1,

iSolidOptions(1,1) = 10 (the reference number of the solid in the tab le above, and

19

iSolidOptions(2,1) = 3 (or 4, if we want to know the saturation ratio). Next consider a second

calculation in which we want to switch off the form ation of both NH 4NO3 and (NH 4) 2SO4, and want to

know the saturation ratio of the aqueous phase with respect to NH 4NO3 but not (NH 4) 2SO4. In this

case the values to be entered are: nSolidOptions = 2, iSolidOptions(1,1) = 10,

iSolidOptions(2,1) = 3, iSolidOptions(1,2) = 13 (the reference number of NH 4NO3), and

iSolidOptions(2,2) = 4. Solids can be entered in this list in any ord er.

15: iSizeiSolidOptions – INTEGER.

On entry: the size of the second dimension of array iSolidOptions as declared in the

(sub)program from which the E-AIM subroutine is called.

Constraint: must be > minSizeiSolidoptions, which is an intern al parameter of the E-AIM

subroutine. A list of the current values of these i nternal parameters is given in section 5.2.

16: nOrganicCmpnds - INTEGER.

On entry : the number of organic compounds that are included in the chemical system (and which

have properties defined in the file eaim.org).

Constraints : must be >0. If this number is >0 then the file ea im.org must be present and the

number of organic compounds entered there must be t he same as nOrganicCmpnds .

Details : if interested, please contact Simon Clegg. This d ocument is complete only for the

description of calculations for inorganic systems.

17: OrganicMoles(iSizeOrgMoles) – REAL, an array of size iSizeOrgMoles.

On entry : the numbers of moles of each of the nOrganicCmpnds organic compounds present in the

chemical system.

Constraints : for each organic compound i that is present, OrganicMoles(i) must be >0.0. If

nOrganicCmpnds = 0 this array can be left blank.

Details : if interested, please contact Simon Clegg. This d ocument is complete only for the

description of calculations for inorganic systems.

18: iSizeOrgMoles – INTEGER.

On entry: the size of array OrganicMoles as declared in the (sub)program from which the E-AIM

subroutine is called.

Constraints: must be > minSizeOrganicMoles, which is an interna l parameter of the E-AIM

subroutine. A list of the current values of these i nternal parameters is given in section 5.2.

19: iOrganicOptions(iSizeiOrgOptions) - INTEGER array, of size iSizeiOrgOptions.

On entry : this array must contain a set of options that det ermine how each organic compound in

the system will be treated.

Constraints : permitted option values are 0, 3, and 4. In syste ms where there are no organic

compounds (i.e., nOrganicCmpnds = 0) this array can be left blank.

20

Details : if interested, please contact Simon Clegg. This d ocument is complete only for the

description of calculations for inorganic systems.

20: iSizeOrgOptions – INTEGER.

On entry: the dimension of array iOrganicOptions as declared in the (sub)program from which the

E-AIM subroutine is called.

Constraint: must be > minSizeiOrganicOptions, which is a value set internally in the E-AIM

subroutine. A list of the current values is given i n section 5.2.

21: iOutput(iSizeiOutput) – INTEGER, an array of size iSizeiOutput.

On exit: the elements of this array contain information abo ut the results of the chemical

calculation.

Details: each element of the array contains the data listed below. (This argument is identical

for both EAIMstr and EAIMvar.)

iOutput(1) : an integer from 1 to 3, meaning the fo llowing:

 0 - the result contains neither an aqu eous nor a hydrophobic liquid phase.

 1 - the result contains an aqueous pha se (but not a hydrophobic liquid phase).

 2 - the result contains a hydrophobic liquid phase (but not an aqueous phase).

 3 - the result contains both an aqueou s phase and a hydrophobic liquid phase.

iOutput(2) : NC, the maximum number of cations in t he system.

iOutput(3) : NA, the maximum number of anions in th e system.

iOutput(4) : NN, the maximum number of neutral spec ies in the system (including water).

iOutput(5) : NG, the maximum number of gases in the system.

iOutput(6) : NS, the maximum number of solids in th e system.

22: iSizeiOutput – INTEGER.

On entry: the size of integer array iOutput as declared in the (sub)program from which the E-AIM

subroutine is called.

Constraint: must be > minSizeiOutput, which is an internal par ameter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 5.2.

23: Output(iSizeOutput) – REAL, an array of size iSizeOutput.

On exit: contains the results of the calculation.

Details: this array will contain the results of the E-AIM calculation. The quantities contained

in each of the elements of array Output are given below. (This argument is identical for b oth

EAIMstr and EAIMvar.) See also the output array iOutputLabels , in which integer-coded labels

corresponding to the output quantities are placed.

21

Note the following definitions used below: NSOL = NC + NA + NN

 NSOL2 = 2 * NSOL

 NSOL3 = 3 * NSOL

 NSOL4 = 4 * NSOL

Output(1) - RH, the relative humidity (as a fraction)

Output(2) - T, temperature (K)

Output(3) - P, system pressure (atm.)

Output(4) - V, system volume (m 3)

Output(5) - density of the aqueous phas e (g cm -3)

Output(6) - volume of the aqueous phase (cm 3)

Output(7) - surface tension of the aque ous phase (mN m -1)

Output(8) - density of the hydrophobic phase (g cm -3)

Output(9) - volume of the hydrophobic p hase (cm 3)

Output(10) - surface tension of the hydr ophobic phase (mN m -1)

Output(11: 10+NC) - moles of e ach cation (aqueous phase)

Output(11+NC: 10+NC+NA) - moles of e ach anion (aqueous phase)

Output(11+NC+NA: 10+NSOL) - moles of e ach neutral (aqueous phase)

Output(11+NSOL: 10+NSOL+NC) - act. coeff . of each cation (aqueous phase)

Output(11+NSOL+NC: 10+NSOL+NC+NA) - act. coeff . of each anion (aqueous phase)

Output(11+NSOL+NC+NA: 10+NSOL2) - act. coeff . of each neutral (aqueous phase)

Output(11+NSOL2: 10+NSOL2+NC) - moles of e ach cation (hydrophobic phase)

Output(11+NSOL2+NC: 10+NSOL2+NC+NA) - moles of e ach anion (hydrophobic phase)

Output(11+NSOL2+NC+NA: 10+NSOL3) - moles of e ach neutral (hydrophobic phase)

Output(11+NSOL3: 10+NSOL3+NC) - act. coeff . of each cation (hydrophobic phase)

Output(11+NSOL3+NC: 10+NSOL3+NC+NA) - act. coeff . of each anion (hydrophobic phase)

Output(11+NSOL3+NC+NA: 10+NSOL4) - act. coeff . of each neutral hydrophobic phase)

Output(11+NSOL4: 10+NSOL4+NG) - moles of e ach gas

Output(11+NSOL4+NG: 10+NSOL4+2*NG) - equilibriu m partial pressure of each gas (atm)

Output(11+NSOL4+2*NG: 10+NSOL4+2*NG+NS) - mo les of each solid

Output(11+NSOL4+2*NG+NS: 10+NSOL4+2*(NG+NS)) - vo lume of each solid (cm 3)

Output(11+NSOL4+2*(NG+NS): 10+NSOL4+2*NG+3*NS) - sa turation ratio of each solid

Notes: zero or a negative number will be assigned to quan tities that are not relevant, such as

properties of the hydrophobic phase where one does not exist, or quantities that could not be

calculated (for example densities or surface tensio ns of chemical systems for which there are

insufficient data).

22

24: iSizeOutput – INTEGER.

On entry: the dimension of real array Output as declared in the (sub)program from which the E-

AIM subroutine is called.

Constraint: must be > minSizeOutput, which is an internal para meter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 5.2.

Notes : a further test of the size of the array Output is carried out in the E-AIM routine, which

will stop with an error message if a larger size th an the current value of iSizeOutput is

needed.

25: iOutputLabel(lenOutputlabel, iSizeOutput) – INTEGER, a two dimensional array with a first

dimension of size lenOuputLabel, and a second dimen sion of size iSizeOutput.

On exit: each column iOutputLabel(:, i) contains an integer-coded label that describes the

contents of the same element Output(i) of the results of the calculation. Values are assi gned in

EAIMvar to this argument when the routine is first called. On later calls it will only be re-

assigned for iOptions(4) = 1.

Constraints: it is expected that all values are >0 and <127.

Details: these labels for the results contained in the Output array are encoded by their

positions in the ASCII character table. This is don e using the intrinsic Fortran subroutine

IACHAR, which is described in the Intel Fortran doc umentation as follows: “ returns the position

of a character in the ASCII character set, even if the processor's default character set is

different. In Intel Fortran, IACHAR is equivalent t o the ICHAR function.” For example, the

first output quantity is the relative humidity (RH) , thus iOutputLabel(1,1) = 82, and

iOutputLabel(2,1) = 72. The integer 82 is the position of upper case R in the ASCII table, and

72 is the position of upper case H. Thus this label is ‘RH’ when converted back to character

form. The unused positions in the array are filled with blanks (position 32 in the ASCII table),

thus iOutputLabel(3:, i) in this example are all set equal to 32. (This arg ument is identical for

both EAIMstr and EAIMvar.)

Notes: this array of integer-coded labels is written only on the first call of the routine, or

if iOptions(4) = 1. This integer coding is used because in some p rogramming environments an

array of strings (i.e., a two dimensional character array) is awkward to handle.

26: lenOutputLabel – INTEGER.

On entry: the first dimension of two dimensional integer arr ay iOutputLabel , as declared in the

(sub)program from which the E-AIM subroutine is called.

Constraint: must be > minLenOutputLabel, which is an internal parameter of the E-AIM subroutine.

A list of the current values of these internal para meters is given in section 5.2.

27: Messages - CHARACTER, a string of length lenMessages.

On exit: contains error or warning messages relating to fau lts encountered in the main E-AIM

routine, otherwise it will be blank.

23

Details: some testing of array sizes and input values is ca rried out in the E-AIM subroutine. If

the tests are failed, the subroutine will return an explanatory message in this string (and no

other results). The string should be checked after the E-AIM routine has been called. (This

argument is identical for both EAIMstr and EAIMvar.)

Notes: where there is a failure, or an input error, that is detected within the code for the

chemical model an error message will be written to the eaim.err file. This is likely to be in

the same directory as the executable that calls E-AIM (see section 3). Execution of the E-AIM

code will then stop, without any other warnings or messages.

28: lenMessages – INTEGER.

On entry: the length of character string Messages as declared in the (sub)program from which the

E-AIM subroutine is called.

Constraint: must be > minLenMessages, which is an internal par ameter of the E-AIM subroutine. A

list of the current values of these internal parame ters is given in section 5.2.

29: UsageRecord - CHARACTER, a string of length lenUsageRecord.

On exit: a statement that includes the current date and tim e, and the time taken (in seconds) to

execute the call of the E-AIM subroutine.

Details: the record is only written if the value iOptions(5) = 1 when the routine is called.

Otherwise, UsageRecord will be blank. Here is a typical example record:

" E-AIMTr: dll()() 1 - 26-05-14 16 :23:40 - Elapsed: 1.8720 - Organics: 2 -"

The first entry, E-AIMTr, refers to the model being used (Models I & II - E-AIMTr; Model III -

E-AIM25; Model IV - E-AIMFr). The contents of the t wo sets of parentheses are intentionally

blank, and the number “1” refers to the number of c alculations carried out since the first call

of the routine (it is a counter). The date and time follow, and then the elapsed time (seconds)

for the current call of the routine. The final numb er in the record is the number of organic

compounds that have been included in the model syst em (2, in this particular example). (This

argument is identical for both EAIMstr and EAIMvar.)

31: lenUsageRecord – INTEGER.

On entry : the length of character string UsageRecord as declared in the (sub)program from which

the E-AIM subroutine is called.

Constraint : must be > minLenUsageRecord, which is an internal parameter of the E-AIM subroutine.

A list of the current values of these internal para meters is given in section 5.2.

32: errorFlags - CHARACTER, a string of length lenErrorFlags.

On exit: contains a set of single character flags indicatin g the success or failure of the E-AIM

call, and the results of any thermodynamic consiste ncy tests.

Details: the first character in the string is always assign ed a value, and the second character

will be assigned a value if the chemical model has been called and returned a result. The

24

remaining characters of the string are reserved for error flags which indicate failures of tests

of the model result (which will be carried out if t he value of argument iOption(3) is set to

unity. (This argument is identical for both EAIMstr and EAIMvar.)

errorFlags(1:1) = '0' for a successful call of the E-AIM routine, and '1' for a failure in

 which there is an error in one or more of the arguments (an array or string

 set to the wrong size, for exampl e). In this case the content of the string

 Messages should be written out, because this is likely to e xplain the error.

errorFlags(2:2) = the integer iFail, which is a fla g set by the solver used to calculate

 equilibrium. A value of '0' indic ates complete success. Experience shows that

 '6' and '1' also occur for correc t answers. If iFail takes other values then

 the result is doubtful - please c ontact the author.

errorFlags(3:10) = if these characters are all blan k then the result of the E-AIM calculation

 has passed a set of internal tes ts for thermodynamic consistency, and is

 likely to be correct. Failures o f the internal tests are indicated by one or

 more of the following single cha racter flags (which may appear in any order):

 L - one or more variables in the c alculation are within a small factor

 of their lower bounds (at the final result). Experience suggests

 that this may mean that there are errors in the calculated

 equilibria (hence concentratio ns and/or partial pressures for

 some minor species.

 W – water activity or relative hum idity;

 G - equilibrium between the gases and the liquid and/or solid phases;

 S – saturation of the aqueous and/ or hydrophobic phases with respect

 to one or more of the solids p resent;

 H – the concentration of hydrogen ion in the liquid phase(s) is

 low enough that gas/liquid par titioning of NH 3 may not be

 accurately estimated (this app lies to the E-AIM models that do

 not include the dissociation o f NH 4
+(aq) and water);

 P – Gibbs' phase rule;

 R – other reactions in and between the liquid phase(s);

 A – calculated activities of organ ic compounds in the system are

 greater than unity, relative t o the pure liquid reference state.

33: lenErrorFlags – INTEGER.

On entry : the length of character string ErrorFlags as declared in the (sub)program from which

the E-AIM subroutine is called.

Constraint : must be > minLenErrorFlags, which is an internal parameter of the E-AIM subroutine.

A list of the current values of these internal para meters is given in section 5.2.

25

5.2 Internal EAIMvar parameters

The sizes of input and output arrays of the E-AIM subroutine are tested within the routine to

make sure they are greater than or equal to certain lengths (for strings) and sizes (for

arrays). The following parameters are defined in th e source code of each E-AIM subroutine. They

set minimum permitted lengths and sizes of the argu ments of the routine. The values as currently

set should be OK for most problems. They are only u sed for testing the validity of the

arguments, and not their contents.

minSizeInorganicMoles = NCmaxBase + NAmaxBase + (NN maxExt-1). These three parameters

 have values of 3, 6, and 2. Thus, minSizeInorganicMoles = 10.

minSizeOrganicMoles = 1, or the value of argument nOrganicCmpnds, whichever is greater.

minSizeiGasOptions = NGmaxBase-1. The value of t his parameter is 6, thus

 minSizeiGasOptions = 5

minSizeiSolidOptions_2 = NSmaxBase. The value of th is parameter is 30.

minSizeiOrganicOptions = 6*minSizeOrganicMoles, thu s minSizeiOrganicOptions is equal

 to the greater of 6 and 6* nOrganicCmpnds.

minSizeOutput : the number of elements of the d ouble precision array

 argument Output , must be greater than or equal to this value.

minLenOutputLabel : the length of each element (i.e ., the size of the first dimension)

 of the integer array argument iOutputLabel must be greater than or

 equal to this value.

minLenMessages : the length of the character str ing argument Messages must be greater

 than or equal to this value.

minSizeiOutput : the size of integer array argum ent iOutput must be greater

 than or equal to this value.

minLenUsageRecord : the length of the character str ing argument UsageRecord

 must be greater than or equal t o this value.

minSizeIOptions : the size of the integer array a rgument iOptions must be

 greater than or equal to this v alue.

minLenErrorFlags : the length of the character str ing argument errorFlags

 must be greater than or equal t o this value.

26

The values of the above parameters that set these m inimum lengths (minLen…) and sizes

(minSize…), are as follows:

 minSizeiOptions = 5

 minSizeInorganicMoles = 10, (calculated as NCma xBase + NAmaxBase + (NNmaxBase - 1))

 minSizeiGasOptions = 5, (calculated as NGmax Base - 1)

 minSizeiSolidOptions_2 = 30 (equal to NSmaxBase)

 minSizeOrganicMoles = MAX(1, nOrganicCmpnds)

 minSizeiOrganicOptions = MAX(6, 6*minSizeOrganic Moles)

 minSizeOutput = 200

 minSizeiOutput = 6

 minLenOutputLabel = 50

 minLenMessages = 350

 minLenUsageRecord = 150

 minLenErrorFlags = 10

5.3 An example call of EAIMvar

Here we describe a call of EAIMvar for the same sys tem described in section 4.3 (for EAIMstr):

0.1 moles H 2SO4, 1.0 moles (NH 4) 2SO4, and 0.5 moles of NH 4NO3 in a system of 1.0 m 3 volume at a

total pressure of 1.0 atm. (These amounts of the sa lts are equivalent to 0.2 moles H +, 2.5 moles

NH4
+, 1.1 moles SO 4

2- , and 0.5 moles NO 3
-). The ambient temperature is 15 oC (288.15 K), and the

equilibrium relative humidity is fixed at 70% (0.7) . The dissociation of water is switched on.

The gases NH 3 and HNO 3 are allowed to partition into the gas phase, but n ot H 2SO4. All solids can

form. Model II is used for this calculation. When E AIMvar is called, the values of the input

arguments should be as follows:

ModelNumber = 2

iOptions(1) = 0 or 1 (controls calculation of densities)

iOptions(2) = 0 or 1 (controls calculation of surface tensions)

iOptions(3) = 1

iOptions(4) = 0 or 1 (the value has no effect on the first call)

iOptions(5) = 1

T = 288.15, P = 1.0, V = 1.0 (temperature, pressure, and volume of the s ystem)

iWaterCase = 1, iDissocOption = 1, WaterValue = 0.70

InorganicMoles(1:9) = 0.2, 2.5, 0.0, 1.1, 0.5, 0.0, 0.0, 0.0, 0.0

iGasOptions(1:5) = 0, 0, 0, 3, 0

nSolidOptions = 0

 (array iSolidOptions(:,:) can be left undefined in this case because nSolidO ptions = 0)

nOrganicCmpnds = 0

 (array iOrganicOptions(:) can be left undefined in this case because nOrgani cCmpnds = 0)

The real array InorganicMoles contains the numbers of moles of the following spe cies (in this

order): H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , Br - , OH - and NH 3. The integer array iGasOptions contains the

options values for the following gases (in this ord er): HNO 3, HCl, NH 3, H 2SO4, and HBr.

27

This completes the description of the problem. The remaining input arguments specify the length

and size of the strings and arrays that describe th e problem and the results. They are as

follows: iSizeiOptions = 5, lenInput = 250, iSizeiOutput = 6, iSizeOutput = 200, lenOutputLabel

= 50, lenMessages = 350, lenUsageRecord = 150, lenErrorFlags = 10. The assigned values are the

minimum lengths and sizes allowed, and are listed a t the end of the previous section.

This problem is the first one in the text file Test _var.dat, which is the input data file for

the program Test_var.for that is included with this manual. The program is intended to

demonstrate, in the simplest way possible, how to c all the EAIMvar subroutine from the supplied

dynamic link library (see Appendix 2 for a descript ion).

After EAIMvar has been called successfully with the above input data, the values of the output

variables will be the same as for the example for E AIMstr described in section 4.3. Note that

the integer-coded labels (iOutputLabel) for each of the quantities in Output have been converted

back to characters, and that quantities in Output which are zero are not listed. (When the test

program Test_var is run, the output will be found i n the file Test_var.res.)

6. Module versions of the E-AIM subroutines
The use of a dynamic link library in which the two routines EAIMstr and EAIMvar are contained in

a Fortran module enables fewer arguments to be used for both routines: essentially just those

needed for input and output of data, and not those that specify lengths and sizes of the

arguments. However, the resulting dll is less porta ble because it requires the user to compile

his/her program with the same Fortran compiler used to produce the dynamic link library.

This section describes the EAIMstr and EAIMvar rout ines in the “module” version of the dll. Test

programs that call this dll, which is named EAIM_mo dule_q64.dll, are described in Appendix 3.

6.1 Specification of the E-AIM subroutine EAIMstr (module version)

This section describes the input and output argumen ts of the module version of EAIMstr. The

colour codes used below are as follows: red – an argument that contains input data for the

calculation which must be provided by the user; blue – an argument of INTENT(OUT) that contains

the results of the calculation. Note that in the sp ecification below REAL (KIND=8) quantities

are “double precision” (with approx. 15 digits of p recision), and INTEGER (KIND=4) are 4 byte

integers (which have a range of +2147483648).

SUBROUTINE EAIMstr(ModelNumber , iOptions , Input ,

 iOutput , Output , OutputLabel , Messages ,

 UsageRecord , ErrorFlags)

INTEGER (KIND=4), INTENT(IN) :: ModelNumber , iOptions (:)

CHARACTER (LEN=*), INTENT(IN) :: Input

INTEGER (KIND=4), INTENT(OUT) :: iOutput (:)

REAL (KIND=8), INTENT(OUT) :: Output (:)

CHARACTER (LEN=*) :: OutputLabel (:)

CHARACTER (LEN=*), INTENT(OUT) :: Messages , UsageRecord , errorFlags

28

6.1.1 Arguments

1: ModelNumber - INTEGER.

On entry : the reference number of the E-AIM model to be used in the calculation.

Constraint : 1 < ModelNumber < 4.

Details : this scalar variable selects the E-AIM model to be used and must have one of the

following values: 1 - Model I; 2 - Model II; 3 - Model III; 4 - Model IV.

Notes : the value will be read when the routine is first called only, or when input argument

iOption(4) = 1.

2: iOptions(:) - INTEGER, a one dimensional assumed shape array. The size of the array must be

> minSizeiOptions, which is an internal parameter o f the subroutine. A list of the current

values of the internal parameters is given at the e nd of section 6.1.2.

On entry: sets options for the calculation of solution densit ies and surface tensions, whether

thermodynamic consistency tests will be carried out on the results, and whether initialization

of the model will be carried out on the current cal l of the routine. (This initialization is

carried out automatically on the first call, irresp ective of the option setting.)

Constraint: all values of the array must be either 0 (option o ff), or 1 (option on).

Details: this is an integer array that is used to specify o ptions to control or include/exclude

different elements of the calculation. Possible val ues are the same as for the non-module

version of EAIMstr and are described in section 4.1 .

3: Input - CHARACTER (LEN=*), a string of arbitrary lengt h. This length must be must be >

minLenInput, which is an internal parameter of the subroutine. A list of the current values of

the internal parameters is given at the end of sect ion 6.1.2.

On entry: contains the input data for the problem to be solv ed.

Details: the data for each problem are specified in the sam e way as for Batch input for the web-

based model. This is described in Appendix 1 of thi s document, and on the following web page:

http://www.aim.env.uea.ac.uk/aim/model2/input2d.htm l . For chemical systems containing only

inorganic compounds, only items a – u from the descriptions should be entered into Input . (If

your system contains organic compounds then additio nal files will be needed to run the model.

please contact Simon Clegg.)

4: iOutput(:) – INTEGER, a one dimensional assumed shape array. The size of the array must be >

minSizeiOutput, which is an internal parameter of t he subroutine. A list of the current values

of the internal parameters is given at the end of s ection 6.1.2.

On exit: the elements of this array contain information abo ut the results of the chemical

calculation.

Details: each element of the array contains the same data a s for the non-module version of

EAIMstr, which is described in section 4.1.

29

5: Output(:) – REAL, a one dimensional assumed shape array. The si ze of the array must be >

minSizeOutput, which is an internal parameter of th e subroutine. A list of the current values of

the internal parameters is given at the end of sect ion 6.1.2.

On exit: contains the results of the calculation.

Details: this array will contain the results of the E-AIM calculation. See also the output array

OutputLabels , in which labels describing each output quantity a re placed. The contents of array

Output are the same as for the non-module version of EAIM str, and are described in section 4.1.

6: OutputLabel(:) – CHARACTER (LEN=*), a one dimensional assumed shap e character array. The

size of the array must be > minSizeOutput, which is an internal parameter of the subroutine. The

length of each element of the array must be > minLe nOutputLabel, which is also an internal

parameter of the subroutine. A list of the current values of the internal parameters is given at

the end of section 6.1.2.

On exit: each element OutputLabel(i) contains a text label that describes the contents of the

same element Output(i) of the results of the calculation. Values are assi gned in EAIMstr to this

argument when the routine is first called. On later calls it will only be re-assigned for

iOptions(4) = 1.

Constraints: none.

Details: this array of labels is written only on the first call of the routine, or if

iOptions(4) = 1.

7: Messages - CHARACTER (LEN=*), a string of arbitrary lengt h. This length must be >

minLenMessages, which is an internal parameter of t he subroutine. A list of the current values

of these internal parameters is given at the end of section 6.1.2.

On exit: contains error or warning messages relating to fau lts encountered in the main E-AIM

routine, otherwise it will be blank.

Details: some testing of array sizes and input values is ca rried out in the E-AIM subroutine. If

the tests are failed, the subroutine will return an explanatory message in this string (and no

other results). The string should be checked after the E-AIM routine has been called.

Notes: where there is a failure, or an input error, that is detected within the E-AIM code for

the chemical model an error message will be written to the file eaim.err that is likely to be in

the same directory as the executable program that c alls the routine (see section 3). Execution

of the E-AIM code will then stop.

8: UsageRecord - CHARACTER (LEN=*), a string of arbitrary length . This length must be >

minLenUsageRecord, which is an internal parameter o f the subroutine. A list of the current

values of these internal parameters is at the end o f section 6.1.2.

On exit: a statement that includes the current date and tim e, and the time taken (in seconds) to

execute the call of the E-AIM subroutine.

Details: the record is only written if the value iOptions(5) = 1 when the routine is called. It

is the same as for the non-module version of EAIMst r and is described in section 4.1.

30

9: errorFlags – CHARACTER (LEN=*), a string of arbitrary length. This length must be >

minLenErrorFlags, which is an internal parameter of the subroutine. A list of the current values

of these internal parameters is at the end of secti on 6.1.2.

On exit: contains a set of single character flags indicatin g the success or failure of the E-AIM

call, and the results of thermodynamic consistency tests.

Details: the first character in the string is always assign ed a value, and the second character

will be assigned a value if the chemical model has been called and returned a result. The

remaining characters of the string are reserved for error flags which indicate failures of tests

of the model result (which will be carried out if t he value of iOption(3) is set to unity. The

flag values are the same as for the non-module vers ion of EAIMstr, and are described in section

4.1.

6.1.2 Internal EAIMstr parameters

The sizes of input and output arrays of the subrout ine are tested internally to make sure they

are greater than or equal to certain lengths (for s trings) and sizes (for arrays). The following

parameters are defined in the source code of the mo dule version of EAIMstr. They set minimum

permitted lengths and sizes of the arguments of the routine. The values as currently set should

be OK for most problems. They are only used for tes ting the validity of the arguments.

The parameters listed below are the same as those f or the non-module version of EAIMstr (see

section 4.2), with the exceptions that minSizeOutpu t and minLenOutputLabel now refer to the

character array OutputLabel (which replaces the int eger array iOutputLabel in the non-module

version of the routine).

minLenInput : the length of the character str ing argument Input must be greater than or

 equal to this value.

minSizeOutput : the number of elements of the d ouble precision array argument Output, and

 the character array OutputLabel , must be greater than or equal to this

 value.

minLenOutputLabel : the length of each element of t he character array argument OutputLabel must

 be greater than or equal to thi s value.

minLenMessages : the length of the character str ing argument Messages must be greater than or

 equal to this value.

minSizeiOutput : the size of integer array argum ent iOutput must be greater than or equal to

 this value.

minLenUsageRecord : the length of the character str ing argument UsageRecord must be greater than

 or equal to this value.

minSizeiOptions : the size of the integer array a rgument iOptions must be greater than or

 equal to this value.

minLenErrorFlags : the length of the character str ing argument ErrorFlags must be greater than

31

 or equal to this value.

The values of the above parameters that specify the se minimum lengths (minLen…) and sizes

(minSize…), are as follows:

 minLenInput = 250, minSizeiOutput = 6,

 minSizeOutput = 200, minLenUsageRecord = 150,

 minLenOutputLabel = 50, minSizeiOptions = 5,

 minLenMessages = 350, minLenErrorFlags = 10

6.1.3 Calling EAIMstr

No example is given here, because the specification of the problem, and the results, are

essentially identical to those for the non-module v ersion of EAIMstr. See Appendix 3 for a

description of the test program for this routine, a nd coding requirements.

6.2 Specification of the subroutine EAIMvar (module version)

This section describes the input and output argumen ts of the module version of EAIMvar. The

colour codes used below are as follows: red – an argument that contains input data for the

calculation which must be provided by the user; blue – an argument of INTENT(OUT) that contains

the results of the calculation. Note that in the sp ecification below REAL (KIND=8) quantities

are “double precision” (with approx. 15 digits of p recision), and INTEGER (KIND=4) are 4 byte

integers (which have a range of +2147483648).

SUBROUTINE EAIMvar(ModelNumber , iOptions , T, P, V,

 iWaterCase , iDissocOption , WaterValue ,

 InorganicMoles , iGasOptions , nSolidOptions , iSolidOptions ,

 nOrganicCmpnds , OrganicMoles , iOrganicOptions ,

 iOutput , Output , OutputLabel ,

 Messages , UsageRecord , errorFlags)

INTEGER (KIND=4), INTENT(IN) :: ModelNumber , iOptions (:), nOrganicCmpnds

REAL (KIND=8), INTENT(IN) :: T, P, V, WaterValue , InorganicMoles (:)

REAL (KIND=8) :: OrganicMoles (:)

INTEGER (KIND=4), INTENT(IN) :: iWaterCase , iDissocOption , iGasOptions (:),

 nSolidOptions

INTEGER (KIND=4) :: iSolidOptions (:,:), iOrganicOptions (:)

REAL (KIND=8), INTENT(OUT) :: Output (:)

INTEGER (KIND=4), INTENT(OUT) :: iOutput (:)

CHARACTER (LEN=*) :: OutputLabel (:)

CHARACTER (LEN=*), INTENT(OUT):: Messages , UsageRecord , errorFlags

32

6.2.1 Arguments

1: ModelNumber - INTEGER.

On entry : the reference number of the E-AIM model to be used in the calculation.

Constraint : 1 < ModelNumber < 4.

Details : This scalar variable selects the E-AIM model to be used and must have one of the

following values: 1 - Model I; 2 - Model II; 3 - Mo del III; 4 - Model IV.

Notes : The value will be read when the routine is first called only, or when input argument

iOption(4) = 1.

2: iOptions(:) – INTEGER, a one dimensional assumed shape array. The size of the array must be >

minSizeiOptions, which is an internal parameter of the subroutine. A list of the current values

of the internal parameters is given at the end of s ection 6.2.2.

On entry: sets options for the calculation of solution densit ies and surface tensions, whether

thermodynamic consistency tests will be carried out on the results, and whether initialization

of the model will be carried out on the current cal l of the routine. (This initialization is

carried out automatically on the first call, irresp ective of the option setting.)

Constraint: all values of the array must be either 0 (option o ff), or 1 (option on).

Details: this is an integer array that is used to specify o ptions to control or include/exclude

different elements of the calculation. The possible values are the same as for the non-module

version of EAIMvar, and are described in section 5. 1.

3: T - REAL.

On entry: the temperature (K) at which the calculation will be carried out.

Constraints: the valid range is 180 to 330 K (for Models I, II and IV), or 298.15 K only (Model

III).

4: P - REAL.

On entry: the system pressure (atm.).

Constraints: must be >0. It is recommended that this value is s et at 1.0.

5: V - REAL.

On entry : the system volume (m 3).

Constraints : must be >0. The code has not been tested for very large or small values of V, which

is set at 1.0 m 3 in the web-based version of E-AIM .

6: iWaterCase - INTEGER.

33

On entry : the way in which water is to be treated in the mo del (held in the condensed phase,

specified as a fixed RH, or equilibrated between va pour and condensed phases).

Constraints : must be 1, 2, or 3.

Details : this argument and the associated WaterValue (below) should be considered together.

iWaterCase = 1 means that the relative humidity of the system (specified as a fraction) is to be

fixed to WaterValue . Alternative iWaterCase values are 2, for which WaterValue must be the total

number of moles of water in the system. Here the pr ogram will solve for the equilibrium

distribution of water between the vapour and conden sed phases and will give the calculated

relative humidity as an output. For iWaterCase = 3, WaterValue is again the total number of

moles of water in the system, but in this case it i s not allowed to partition into the vapour,

and remains in the condensed phase as a liquid, ice , or water of hydration.

7: iDissocOption - INTEGER.

On entry : determines whether or not the dissociation of wat er in the liquid phase is included in

the calculations.

Constraints : must be -1, 0, or 1.

Details : A value of -1 means that dissociation is not calc ulated for any input conditions. A

value of zero means that if the numbers of moles of H + and OH - are both entered as zero (see

item 9 below), then H 2O dissociation in the aqueous phase will remain off , and neither ion will

be a variable in the calculations. If a non-zero va lue of either H + or OH - is entered, then the

other quantity will be made a variable and water di ssociation will be on. A value of 1 means

that water dissociation will always be calculated, and both H +(aq) and OH - (aq) will be made

variables in the calculation, even if their input a mounts are zero.

8: WaterValue - REAL.

On entry : the number of moles of water present in the chemi cal system, or the ambient relative

humidity (expressed as a fraction, not a percentage), according to the value of iWaterCase .

Constraints : for iWaterCase = 2 or 3, WaterValue must be > 0. For iWaterCase = 1 (fixed RH), 0.1

< WaterValue < 0.999.

Details : where iWaterCase is equal to 1, WaterValue is the equilibrium relative humidity in the

chemical system, expressed as a fraction (thus, 80% RH is entered as 0.80). For iWaterCase equal

to 2 or 3, WaterValue is the number of moles of water in the chemical sy stem, either constrained

to the condensed phase only (iWaterCase = 3), or allowed to partition between the condense d and

vapour phases (iWaterCase = 2).

9: InorganicMoles(:) – REAL, a one dimensional assumed shape array. The size of the array must

be > minSizeInorganicMoles, which is an internal pa rameter of the subroutine. A list of the

current values of the internal parameters is given at the end of section 6.2.2.

On entry : the numbers of moles of H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , Br - , OH - and NH 3 present in the

system.

Constraints : all values must be > 0.0, and the amounts of cati ons and anions must be charge

balanced.

34

Details : the numbers of moles of each species must be pres ent in elements 1:9 of the array in

the order: H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , Br - , OH - and NH 3. The valid combinations of non-zero

species for each model are: Model I - H +, SO 4
2- , NO 3

- , Cl - , and Br - ; Model II - H +, NH 4
+, SO 4

2- , NO 3
- ,

OH- and NH 3; Models III and IV - H +, NH 4
+, Na +, SO 4

2- , NO 3
- , Cl - , OH - , and NH 3.

10: iGasOptions(:) – INTEGER, a one dimensional assumed shape array. The size of the array must

be > minSizeiGasOptions, which is an internal param eter of the subroutine. A list of the current

values of the internal parameters is given at the e nd of section 6.2.2.

On entry : flags that control the treatment of the inorganic gases HNO 3, HCl, NH 3, H 2SO4, and HBr

in the chemical system (if they can be formed).

Constraints : each value can be equal to 0, 3, or 4.

Details : the integer flags must be present in elements 1:5 of the array, and apply to the gases

HNO3, HCl, NH 3, H 2SO4, and HBr, respectively. The flags control how the gas phase species are

treated. Taking HNO 3(g) as an example, a value of '3' means that it is assumed not to occur and

so all NO 3
- (and associated H +) remain in the condensed phase(s). A value of '4' means, again,

assume no formation of HNO 3(g) but report its equilibrium partial pressure ove r the liquid phase

(if it exists, and also contains both H+ and NO 3
-). A value of '0' means that HNO 3(g) can be

formed and will be partitioned between the phases i f the two ions are present. The same applies

to the other gases.

Notes : for systems containing NH 3 that are likely to contain a near-neutral or alkal ine aqueous

phase it is advisable to turn on the dissociation o f water.

11: nSolidOptions - INTEGER.

On entry : the number of inorganic solids for which options will be specified in the array

iSolidOptions (see below).

Constraints : must be >0 and <30.

Details : it is possible to switch off the formation of ind ividual solids (as many as needed) in

the model in order to investigate the properties of supersaturated solutions. See the next entry

for further details.

12: iSolidOptions(2,:) – INTEGER, a two dimensional assumed shape array. The first dimension

must be of size 2, and a second dimension of size > minSizeiSolidOptions_2, which is an internal

parameter of the subroutine. A list of the current values of the internal parameters is given at

the end of section 6.2.2.

On entry : if nSolidOptions is >0, the element iSolidOptions(1, i) should contain the reference

number of the solid whose option value is being set , and iSolidOptions(2, i) should contain the

value of the option itself, for the i th solid for which an option is being set. If no so lid

options are being set then the array can be left bl ank.

Details : for the reference numbers of the inorganic solids in the model, and examples of the use

of this option, see section 5.1.

13: nOrganicCmpnds - INTEGER.

35

On entry : the number of organic compounds that are included in the chemical system (and which

have properties defined in the file eaim.org).

Constraints : must be >0. If this number is >0 then the file eaim.org must be present and the

number of organic compounds entered there must be t he same as nOrganicCmpnds .

Details : if interested, please contact Simon Clegg. This d ocument is complete only for the

description of calculations for inorganic systems.

14: OrganicMoles(:) – REAL, a one dimensional assumed shape array. If nOrganicCmpnds = 0, then

the size of the OrganicMoles must be > 1 (which is the value of internal parameter

minSizeOrganicMoles); and if nOrganicCmpnds > 0 the n its size > nOrganicCmpnds.

On entry : the numbers of moles of each of the nOrganicCmpnds organic compounds present in the

chemical system.

Constraints : for each organic compound i that is present, OrganicMoles(i) must be >0.0. If

nOrganicCmpnds = 0 this array can be left blank.

Details : if interested, contact the author. This document is complete only for the description

of calculations for inorganic systems.

15: iOrganicOptions(:) – INTEGER, a one dimensional assumed shape array.

On entry : this array must contain a set of options that det ermine how each organic compound in

the system will be treated. Permitted option values are 0, 3, and 4. In systems where there are

no organic compounds (i.e., nOrganicCmpnds = 0) this array can be left blank.

Constraint: must be > minSizeiOrganicOptions, which is a value set internally in the E-AIM

subroutine. A list of the current values is given i n section 6.2.2.

Details : if interested, please contact Simon Clegg. This d ocument is complete only for the

description of calculations for inorganic systems.

16: iOutput(:) – INTEGER, a one dimensional assumed shape array. The size of the array must be

> minSizeiOutput, which is an internal parameter of the subroutine. A list of the current values

of the internal parameters is given at the end of s ection 6.2.2.

On exit : the elements of this array contain information ab out the results of the chemical

calculation.

Details : each element of the array contains the same data as for the non-module version of

EAIMvar, which is described in section 5.1.

17: Output(:) – REAL, a one dimensional assumed shape array. The si ze of the array must be >

minSizeiOutput, which is an internal parameter of t he subroutine. A list of the current values

of the internal parameters is given at the end of s ection 6.2.2.

On exit : contains the results of the calculation.

Details : this array will contain the results of the E-AIM calculation. See also the output array

OutputLabels , in which labels describing each output quantity a re placed. The contents of array

Output are the same as for the non-module version of EAIM var, and are described in section 5.1.

36

18: OutputLabel(:) – CHARACTER (LEN=*), a one dimensional assumed shap e character array. The

size of the array must be > minSizeOutput, which is an internal parameter of the subroutine. The

length of each element of the array the must be > m inLenOutputLabel, which is also an internal

parameter of the subroutine. A list of the current values of the internal parameters is given at

the end of section 6.2.2.

On exit: each element OutputLabel(i) contains a text label that describes the contents of the

same element Output(i) of the results of the calculation. Values are assi gned in EAIMvar to this

argument when the routine is first called. On later calls it will only be re-assigned for

iOptions(4) = 1.

Constraints: none.

Details: this array of labels is written only on the first call of the routine, or if

iOptions(4) = 1.

19: Messages - CHARACTER (LEN=*), a string of arbitrary length . This length must be >

minLenMessages, which is an internal parameter of t he E-AIM subroutine. A list of the current

values of these internal parameters is given at the end of section 6.2.2.

On exit: contains error or warning messages relating to fau lts encountered in the main E-AIM

routine, otherwise it will be blank.

Details: some testing of array sizes and input values is ca rried out in the E-AIM subroutine. If

the tests are failed, the subroutine will return an explanatory message in this string (and no

other results). The string should be checked after the E-AIM routine has been called.

Notes: where there is a failure, or an input error, that is detected within the E-AIM code for

the chemical model an error message will be written to the file eaim.err that is likely to be in

the same directory as the executable program that c alls E-AIM . Execution of the E-AIM code will

then stop.

20: UsageRecord - CHARACTER (LEN=*), a string of arbitrary length . This length must be >

minLenUsageRecord, which is an internal parameter o f the subroutine. A list of the current

values of these internal parameters is at the end o f section 6.2.2.

On exit: a statement that includes the current date and tim e, and the time taken (in seconds) to

execute the call of the E-AIM subroutine.

Details: it is the same as for the non-module version of EA IMvar and is described in section

5.1.

21: errorFlags – CHARACTER (LEN=*), a string of arbitrary length. This length must be >

minLenErrorFlags, which is an internal parameter of the subroutine. A list of the current values

of these internal parameters is in section 6.2.2.

On exit : contains a set of single character flags indicati ng the success or failure of the E-AIM

call, and the results of thermodynamic consistency tests.

Details : the first character in the string is always assig ned a value, and the second character

will be assigned a value if the chemical model has been called and returned a result. The

37

remaining characters of the string are reserved for error flags which indicate failures of tests

of the model result (which will be carried out if t he value of iOption(3) is set to unity. The

flag values are the same as for the non-module vers ion of EAIMvar, and are described in section

5.1.

6.2.2 Internal EAIMvar parameters

The sizes of input and output arrays of the E-AIM subroutine are tested within the routine to

make sure they are greater than or equal to certain lengths (for strings) and sizes (for

arrays). The following parameters are defined in th e source code of the E-AIM subroutine. They

set minimum permitted lengths and sizes of the argu ments of the routine. The values as currently

set should be OK for most problems. They are only u sed for testing the validity of the

arguments, and not their contents.

The parameters listed below are the same as those f or the non-module version of EAIMvar (see

section 5.2), with the exception that minSizeOutput and minLenOutputLabel now refer to the

character array OutputLabel (which replaces the int eger array iOutputLabel in the non-module

version of the routine).

minSizeInorganicMoles = NCmaxBase + NAmaxBase + (NN maxExt-1). These three parameters

 have values of 3, 6, and 2. Thus, minSizeInorganicMoles = 10.

minSizeOrganicMoles = 1, or the value of argument nOrganicCmpnds, whichever is greater.

minSizeiGasOptions = NGmaxBase-1. The value of t his parameter is 6, thus

 minSizeiGasOptions = 5

minSizeiSolidOptions_2 = NSmaxBase. The value of th is parameter is 30.

minSizeiOrganicOptions = 6*minSizeOrganicMoles, thu s minSizeiOrganicOptions is equal

 to the greater of 6 and 6* nOrganicCmpnds.

minSizeOutput : the number of elements of the d ouble precision array argument

 Output , and character array OutputLabel , must be greater than or

 equal to this value.

minLenOutputLabel : the length of each element of t he character array argument OutputLabel

 must be greater than or equal t o this value.

minLenMessages : the length of the character str ing argument Messages must be greater

 than or equal to this value.

minSizeiOutput : the size of integer array argum ent iOutput must be greater

 than or equal to this value.

38

minLenUsageRecord : the length of the character str ing argument UsageRecord

 must be greater than or equal t o this value.

minSizeIOptions : the size of the integer array a rgument iOptions must be

 greater than or equal to this v alue.

minLenErrorFlags : the length of the character str ing argument errorFlags

 must be greater than or equal t o this value.

The values of the above parameters that set these m inimum lengths (minLen…) and sizes

(minSize…), are as follows:

 minSizeiOptions = 5

 minSizeInorganicMoles = 10, (calculated as NCma xBase + NAmaxBase + (NNmaxBase - 1))

 minSizeiGasOptions = 5, (calculated as NGmax Base - 1)

 minSizeiSolidOptions_2 = 30 (equal to NSmaxBase)

 minSizeOrganicMoles = MAX(1, nOrganicCmpnds)

 minSizeiOrganicOptions = MAX(6, 6*minSizeOrganic Moles)

 minSizeOutput = 200

 minSizeiOutput = 6

 minLenOutputLabel = 50

 minLenMessages = 350

 minLenUsageRecord = 150

 minLenErrorFlags = 10

6.2.3 Calling EAIMvar

No example is given here, because the specification of the problem, and the results, are

essentially identical to those for the non-module v ersion of EAIMvar. See Appendix 3 for a

description of the test program for this routine, a nd coding requirements.

7. Files
This document, the dll files, and test programs, ar e provided in a zip file with the following

directory structure and contents:

\ (top level): ReadMe.txt

\Manual : pdf copy of this manual.

\Non-Module : the non-module versions of the dll and test progr ams (sections 4 and 5 of this

document), in the following subdirectories:

\Non-Module\Libraries : the .dll, .lib, and .exp files for the non-module based versions of

EAIMstr and EAIMvar, as described in section 2 of t his document.

\Non-Module\Test _str (64 bit) : the test program Test_str.for, including the inpu t data file,

results file, and executable, for testing the non-m odule version of routine EAIMstr. The file

39

MakeTest_str is the command file for the Intel Fort ran compiler to compile and link the test

program.

\Non-Module\Test _var (64 bit) : the same as above, except that these files are fo r testing the

non-module version of EAIMvar.

\Module : the module versions of the dll and test programs, as described in section 6 of this

document, in the following subdirectories:

\Module\Libraries : the .dll, .lib, and .exp files for the module-bas ed versions of EAIMstr and

EAIMvar, compiled to run in extended precision inte rnally and on the 64 bit version of Windows

(as indicated by the “q64” in the name). The direct ory also contains the eaim_routines.mod file

that is needed for compilation of the test programs .

\Module\Test _str (64 bit) : the test program Test_str.for, including the inpu t data file, results

file, and executable, for testing the module versio n of routine EAIMstr. The file MakeTest_str

is the command file for the Intel Fortran compiler to compile and link the test program.

\Module\Test _var (64 bit) : the same as above, except that these files are fo r testing the module

version of EAIMvar.

40

Appendix 1. Specifying Input Data for Routine EAIMstr, Using the String Argument
 Input

This description has been adapted from the one on t he E-AIM website for batch input, and is

essentially the same. The text string argument Input must contain the following information, and

in this order:

 * temperature (in K)

 * system pressure (in atm., generally set to 1 .0)

 * system volume (in m 3, generally set to 1.0)

 * water case number (1, 2 or 3)

 * water dissociation option (-1, 0 or 1),

 * the fixed RH or total moles of water dependi ng on the value of

 the water case

 * the numbers of moles of inorganic ions, and NH3

 * integers options controlling the formation o f solids and trace

 gas equilibration.

 * amounts of user-defined organic species, if any (properties are entered

 in the eaim.org file), followed by 6 groups of integer options whi ch

 control their behaviour.

The sections below explain how to specify problems in which there are only inorganic chemical

species, and also those which contain organic compo unds. At this time the full description of

how to include organic compounds (which requires th e use of data files in addition to the E-AIM

subroutines) has not been written. Therefore only s ubsection A is relevant.

A. INORGANIC AMOUNTS AND OPTIONS

An example of the contents of text string Input are given below for a typical problem. The line

has been split into two, and the letters beneath ea ch number are for explanatory purposes and

are not part of the input. Successive values should be separated by one or more spaces.

298.15D0 1.000 1.000 1 0 0.420 1.0 2 .0 0.0 1.0 1.0

 a b c d e f g h i j k

0.0 0.0 0.0 0.0 3 3 3 3 3 0

 l m n o p q r s t u

The meaning of each value is now described (and whe ther each entry is an integer, or real

number, is also noted):

a - temperature (K). (REAL). Valid range is between 180 K and 330 K (Models I, II, and IV), or

298.15 K only (Model III).

b - system pressure (here 1 atm). (REAL). It is reco mmended at present that this value is left

unchanged.

c - system volume (here 1 m 3). (REAL).

41

d, f - water case (d, INTEGER) and associated value (f , REAL). d = 1 means that the relative

humidity of the system is to be fixed to the value of f , which in this example is 42% (specified

as the fraction 0.42).

Alternative water options are case d = 2, in which case f must be the total number of moles of

water in the system. Here the program will solve fo r the equilibrium distribution of water

between the vapour and condensed phases and will gi ve the calculated RH as an output. For d = 3,

f is again the total number of moles of water in the system, but in this case it is not allowed

to partition into the vapour, and remains in the co ndensed phase as a liquid, ice, or water of

hydration.

e - this is the water dissociation option. (INTEGER). A value of -1 means that dissociation is

not calculated for any input conditions. A value of zero means that if both numbers of moles of

H+ and OH - are zero on input, then H 2O dissociation will remain off, and neither ion wil l be a

variable in the calculations. If either H + or OH - is present on input, then the other will be

made a variable and water dissociation will be on. A value of 1 means that water dissociation

will always be calculated, and both H +(aq) and OH - (aq) will be made variables in the calculation,

even if their input amounts are zero.

g - o - these values (REAL) are, in order, the numbers of moles of H +, NH4 +, Na +, SO 4
2- , NO3 - , Cl -

, Br - , OH - and NH 3 present (see elsewhere for valid combinations of i ons for Models I-IV) .

p - this controls how gas phase HNO 3 is treated by the program. (INTEGER). A value of ' 3' means

that it is assumed not to occur, hence all NO 3
- (and associated H +) remain in the condensed

phase(s). A value of '4' means, again, assume no fo rmation of HNO 3(g) but report its equilibrium

partial pressure over the liquid phase (if it exist s, and also contains both H + and NO 3
-). A

value of '0' means that HNO 3(g) can be formed and will be partitioned between t he phases if the

ions are present. No other values of n are permitted.

q - as p above, for the gas HCl.

r - as p above, for the gas NH3.

s - as p above, for the gas H 2SO4.

t - as p above, for the gas HBr.

u - the number of solids whose options are to be i ndividually entered. (INTEGER). In the above

example, u is zero, which means that the program will look fo r all the possible solids that can

form and include them in the equilibration.

If u is equal to 1 or more, then it must be followed by the reference numbers and associated

option values (both integers) of the u solids to be treated specially. For example, '1 10 3'

instead of '0' would mean:

 * 1 solid phase

 * reference number = 10 (i.e., (NH 4) 2SO4))

 * option = 3 (means exclude from calculation).

42

The only other available option is '4', which means exclude from the calculation but report the

saturation ratio.

Another example, '2 10 3 13 4' instead of '0' mea ns:

 * 2 solids

 * 1st solid reference number = 10 (i.e., (NH 4) 2SO4)

 * 1st solid option = 3 (means exclude from calcul ation).

 * 2nd solid reference number = 13 (i.e., NH 4NO3)

 * 2nd solid option = 4 (means exclude from calcul ation, but report the saturation ratio)

Reference numbers of all the solids in the model ar e given below (this is the same list as in

section 5.1):

Ref: Solid Ref: Solid Ref: Solid

 1 H2O(ice) 10 (NH4)2SO4 18 Na2SO4

 2 H2SO4 11 (NH4)3H(SO4)2 19 Na2SO4.10H2O

 3 H2SO4.H2O 12 NH4HSO4 20 Na3H(SO4)2

 4 H2SO4.2H2O 13 NH4NO3 21 NaHSO4.H2O

 5 H2SO4.3H2O 14 2NH4NO3.(NH4)2SO4 22 NaHSO4

 6 H2SO4.4H2O 15 3NH4NO3.(NH4)2SO4 23 NaH3(SO4)2.H2O

 7 H2SO4.6.5H2O 16 NH4NO3.NH4HSO4 24 Na2SO4.(NH4)2SO4.4H2O

 8 HNO3.H2O 17 NH4Cl 25 NaNO3

 9 HNO3.3H2O 26 NaNO3.Na2SO4.H2O

 27 NaCl

 28 HCl.3H2O

 29 HNO3.2H2O

 30 NaCl.2H2O

B. USER-SPECIFIED ORGANIC AMOUNTS AND OPTIONS

The following quantities are entered, in the order given below, for each of the N organic

solutes specified in the eaim.org file. They should be placed after the last of the inorganic

options for the problem, on the same line. (If ther e are no organics, this entire section can be

ignored.)

A. moles of each solute, (for organics 1 -> N) (R EAL)

B. gas options, (1 -> N) (I NTEGER)

C. solid options, (1 -> N) (I NTEGER)

D. mixed solid options, (1 -> N) (I NTEGER)

E. dissociation options, (1 -> N) (I NTEGER)

F. liquid/liquid equilibrium options (1->N) (I NTEGER)

G. organic salt options (1 -> N) (I NTEGER)

The integer options values for items A to F above are as follows:

0 - allow the gas/solid/mixed solid to form, the di ssociation (of organic acid or base) to

occur, or the liquid/liquid equilibrium to be calcu lated if the appropriate quantities have

been set in the eaim.org file. For example, if a value of the vapour pressu re or Henry's

43

law constant has been specified then if the option value is 0the compound will be allowed to

partition into the gas phase. If the thermodynamic quantity has not been specified then the

option value will have no effect, and can safely be left at zero. In the case of

dissociation, of an organic acid or base, a value o f 0 means that the program will calculate

the equilibrium.

3 - prevent (switch off) gas/solid/mixed solid/diss ociation, or a liquid/liquid equilibration,

from occurring. So, to use the above examples, a va lue of 3 for the gas option of the

organic prevents it partitioning into the gas phase even if the compound has been assigned a

Henry's law constant or vapour pressure. For liquid /liquid equilibrium this option constrains

any compound that would otherwise be able to partit ion between both liquid phases to exist

only in the aqueous phase.

4 - this option value has the same effect as a valu e of 3, but the equilibrium vapour pressure

 or solid saturation ratio will be calculated and included in the output.

The "mixed solid" formation option, item D, should be set to 3 (ie., switched off) as this

feature has not been developed and tested. Note: cu rrently this option is reset to 3 internally

in E-AIM , and the user input is ignored.

Item G, the organic salt options: The model is able to ca lculate the formation of aminium

sulphate, nitrate, and/or chloride salts in systems containing amines (that have been

neutralised to aminium ions by H +) and the three inorganic anions. (Of course the us er must also

have entered the appropriate equilibrium constants in eaim.org .) The options for all three salts

are represented by a single integer as follows. The option value itself is the sum of the

following codes:

 1 - switch off formation of aminium sulphate sal t

 2 - switch off formation of aminium nitrate salt

 4 - switch off formation of aminium chloride sal t

So, if the formation of all three salts is to be sw itched off then the integer option value is 1

+ 2 + 4 = 7. If only the sulphate and chloride salt s are to be switched off then the option

value will be 1 + 4 = 5. If only the chloride salt is to be switched off then the value of the

option is 4. If all salts are to be allowed to form then the option value is 0 (zero). This

value (i.e., 0) should also be used when the organi c is not an amine and this option is

therefore irrelevant.

Here is an example of how to input the organic amou nts and options:

Below is input needed (i.e., following item ' s ' in section 2 above) for a system containing 2

organic compounds (1.0 mole of the first, and 2.5 m oles of the second). The first organic is an

amine (and can form solid sulphate, nitrate, and ch loride salts). Partitioning of the first

organic into the gas phase is switched off (item B) , as is the aqueous phase dissociation of the

second (item E). The formation of the aminium nitra te salt (for the first organic only) is

switched off (item G):

1.0 2.5 3 0 0 0 0 0 0 3 0 0 2 0

 A B C D E F G

44

The letters indicate which pairs of numbers corresp ond to items A-G above.

C. EXAMPLE OF SYSTEM CONTAINING BOTH INORGANIC AND ORGANIC COMPOUNDS

The line of input below specifies a chemical system containing 0.1 mol m -3 of H 2SO4, 0.15 mol m -3

of (NH 4) 2SO4, and three organic compounds for which the amounts are 0.05 0.075 and 0.9 mol m -3 .

The thermodynamic properties of the three organic c ompounds must be specified in file eaim.org,

and the details of how to do this are described in the header of that text file.

In this system we fix the RH at 0.55 (55%), and pre vent the partitioning of H 2SO4 from the

condensed phase into the gas phase. We also switch off the formation of the solid salt

NH4HSO4(s). The second organic compound is an acid, which dissociates in the aqueous phase, and

in this calculation we prevent the dissociation fro m occurring (ie, we switch it off). Finally,

for this example, the third organic compound is an amine and the formation of aminium sulphate

salt is also switched off.

Here is the single line of input, split into three parts:

 298.15D0 1.000 1.000 1 0 0.55 0.2 0.3 0.0 0.25 0.0

 a b c d e f g h i j k

 0.0 0.0 0.0 0.0 0 0 0 3 0 1 12 4

 l m n o p q r r t u

 0.05 0.075 0.09 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1

 A B C D E F G

The letters below each section of the line are not part of the data, but are added here to help

the user refer to the notes and definitions above.

45

Appendix 2. Simple Test Programs (non-module routines)

The dll files are supplied with two Fortran test pr ograms, Test_str.for (which calls routine

EAIMstr), and Test_var.for (which calls EAIMvar). Each program has its own data file

(Test_str.dat, and Test_var.dat), which it reads to obtain the input data a small number of

problems. Users can alter, or add to, these problem s in the data files as needed.

In both the examples provided, the first problems b eing solved are those described in sections

4.3 and 5.3.

Using the Intel Fortan compiler, the test programs were compiled and linked to the libraries

with the following command: “ifort @makeTest”, wher e makeTest is the name of a command file (a

simple text file) that contains all the options nee ded for compiling and linking the test

program(s) with the dynamic link library. Using the program Test_var.for as an example, these

options are:

(1) compile options for the test program

--

 /double_size:64 /integer_size:32 /check:all /tra ceback /O1 /static

(2) output (executable) file name

 /exe:Test_var.exe

(3) the name of the source file containing the t est program

------------------- --------------------------- -----------

 Test_var.for

(4) link to the E-AIM dll library

 /link EAIM_q64.lib

(All the lines starting # are comments within the c ommand file). The first two compile options

in (1) set the sizes used for double precision and integer variables in the test program. The

values listed above (64 and 32) are defaults, so th ese options can be omitted. The /check:all

and /traceback options set comprehensive error chec king in the test program (useful if you alter

it, and need to debug). The option /O1 sets a low l evel of code optimization (this could be

given a higher value), and /static causes the execu table to link to all libraries statically.

These libraries include those provided with the com piler – which you don’t normally see or have

to specify – and static binding means that the exec utable should run on computers on which the

compiler software hasn’t been installed.

In (2) above the name of the executable test progra m is set to Test_var.exe, and in (3) the name

of the Fortran file to be compiled is given.

The /link option in (4) specifies that the test pro gram will be linked to the dynamic link

library EAIM_q64. Important note : the three files EAIM_q64.lib, EAIM_q64.dll, and E AIM_q64.exp

should be present in the same directory as the test program when it is compiled, and in the same

directory as the executable Test_var.exe when it is run.

46

Appendix 3. Simple Test Programs (module routines).

In this case a single dynamic link library is provi ded (EAIM_module_q64.dll), compiled so that

E-AIM runs internally in extended precision and for use on machines running 64 bit Windows. The

names of the files containing the test programs are the same as for the non-module case

(Appendix 2), though the code has been changed as n eeded by the module-based EAIMstr and EAIMvar

routines. There are two main changes: first, the in clusion of the statement ‘USE EAIM_routines’

at the beginning of the program; second, the smalle r numbers of arguments needed for EAIMstr and

EAIMvar compared to the non-module versions. The pr ocedure for compiling and running the

programs is the same as for the non-module case, ex cept that the file eaim_routines.mod (which

is included with the library files) must be present in the same directory as the source code of

the test programs when they are compiled.

47

Appendix 4. Notes on Running E-AIM Subroutines in Different Programming
 Environments.

It is intended that this section will contain notes describing users’ experiences running the E-

AIM routines in different environments (being called f rom programs written in languages other

than Fortran). Basically it will be a “hints and ti ps” section. The simplest case is likely to

be where the routines are called by other Fortran p rograms.

1. Calling from Mathematica (Windows)

This has been done successfully by Scot Martin at H arvard (smartin@seas.harvard.edu), for use on

his Aerosol Calculator website (http://aerosolcalculator.seas.harvard.edu /

webMathematica/SingleParticle.jsp).

